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Fig. 1.
(b) Object detection examples; and (c) Visualizations of the augmented semantic map output.

Abstract—In this paper, we propose a framework to build
an improved metric representation of the environment with se-
mantic information. We explore some of the recent advances of
deep neural networks to object detection/semantic classification
in a visual-based perception scheme. The output of this system
is a map of the environment extended with semantic object
classes and their positioning. This framework combines sensors
available in commonly used mobile robotic platforms such as
an RGB-D camera, 2D LIDAR and odometers. In short, a
CNN-based object detector and a 3D model-based segmentation
technique are used to localize and identify different classes of
objects in the scene. Then the tracking of the semantic classes
is performed with a Kalman filter approach. We show results
for “door” objects and validate this approach with a collected
dataset in an extensive indoor area, comprising corridors and
offices. A new dataset and the source code are made available
to the community as ROS package

I. INTRODUCTION

Scene understanding is a crucial factor in the develop-
ment of robots that can effectively act in an uncontrolled,
dynamic, unstructured, and unknown environment, such as
those found in real-world scenarios. Several tasks in the
field of mobile robotics such as long-term mapping, obstacle
avoidance, and autonomous navigation have received a wide
attention in recent years, but they are still often challenged
by adversities found in those environments. In this con-
text, a higher level of understanding of the scene (such

IThe dataset and source code repositories links are not included now in
the paper to respect the double-blind review process.

Augmented semantic mapping overview. (a) Bird’s-eye view of the 2D map and door locations (in green) and some image frames of the dataset;

as identifying certain objects, people, as well as localizing
them) is usually required to perform effective navigation
and perception tasks. Typical examples are self-driving cars,
which need to recognize other vehicles, pedestrians and the
free road space for safe navigation [Il], [2], or personal
assistant robots that need to recognize the environment and
humans for safe interaction [3l], [4]. Recent advances on
the computing capability of embedded devices and artificial
intelligence techniques have allowed this higher level of
understanding to be comparable to human-like performance.
It is then interesting to integrate these advances into robotics
systems, allowing them to perform more complex tasks in
less specialized environments.

In this paper, we propose an open framework for building
hybrid maps, combining both environment structure (metric
map) and environment semantics (objects classes) to support
autonomous robot perception and navigation tasks. Appli-
cations of this representation are in place categorization,
contextual navigation or in “situation awareness” by distin-
guishing dynamic objects (e.g., people) from static ones (e.g.,
doors, walls, windows), to name a few. We propose a frame-
work that detects and models objects in the environment
from RGB-D images using convolutional neural networks to
capture higher-level information. Finally, the metric map is
augmented with the semantic information extracted using the
object categories. Moreover, we also provide a new dataset
acquired in an extensive indoor environment comprising
corridors and offices with RGB-D images, 2D LIDAR and
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odometry data. Figure [T] shows some examples of data from
our dataset and the result of our mapping framework.

The reminder of the paper is organized as follows. First,
Section presents some recent related works. Next, we
describe our semantic map augmentation in Section and
the proposed dataset in Section [[V] The experiments and
implementation details are presented in section [V] Finally,
Section [V]] concludes the paper and discuss some perspec-
tives.

II. RELATED WORK

Object detection and semantic segmentation are challeng-
ing computer vision problems. These problems are relevant
to several tasks in diverse domains (e.g., virtual reality,
robotics, intelligent vehicles) and have seen outstanding ad-
vances from recent deep learning techniques [, [6l], [[7], [8].
Most techniques generate region proposals, i.e., bounding
boxes, for possible objects in the image; predicting the most
likely class for each region and suppressing overlapping
regions while discarding regions with low probability scores.

Semantic mapping and localization have seen a trend in
recent years. For instance, Nascimento et al. [9] applied
a binary RGB-D descriptor to feed an Adaboost learning
method to classify objects in a navigation task. McCormac
et al. [10] propose a method for semantic 3D mapping. Their
work combine the work of Whelan et al. [11]], an RGB-D
based SLAM framework for reconstructing the scene into a
3D dense point cloud, with a convolutional/deconvolutional
neural network for semantic segmentation. Projecting the
segmented labels onto the 3D reconstructed point cloud
allows for semantically labeling each 3D point.

In a similar fashion, the work of Li and Belaroussi [12]
also aims at providing a method for 3D semantic point cloud
mapping, but without monocular images. Their methodol-
ogy uses LSD-SLAM, which provides a semi-dense 3D
reconstruction and localization system from monocular im-
ages [13]. Likewise, the combined point cloud and projected
segmented image provides a semantic 3D map. Our work
follows the trend of these approaches to build more elabo-
rated representations of the environment, taking advantage
of the recent advances in machine learning and RGB-D
sensory technologies. A similar methodology outline to ours
can be seen in the Intel Realsense Object Library for RGB-
D cameras [14]. They propose an algorithm that performs

Visualization of the formulation pipeline, showing the main modules and some of the information exchanged between them.

object detection using the RGB camera information, object
localization and finally object tracking through different time
frames. However, it is designed for reactive navigation and
does not support any kind of environment mapping such as
the one proposed in this work.

III. METHODOLOGY

Our augmented scene representation approach can be
divided into three main modules: a SLAM module, which
creates a 2D map of the environment using the on-board
robot sensors; the object detector module, which runs a
convolutional neural network that detects pre-trained object
classes in real-time; and an object positioning module that
processes the information of the previous modules with the
point cloud information of the RGB-D image to localize
and track previously localized objects in the map. Figure [2]
depicts an overview of our approach.

A. Localization and Mapping

In this section, we briefly describe the first stage of
the augmented mapping framework. The localization and
mapping module gives a 2D representation of the envi-
ronment, along with the localization of the robot in this
representation. We select the standard Gmapping SLAM
algorithm [15]. This algorithm produces a grid-based map
using depth information (we denote this map in the text as
M). Each cell of this grid represents a small region of the
space, and will be classified as either free space, occupied
or unknown. The algorithm uses Rao-Blackwellized Particle
Filters to perform the mapping and localization. The output
is the 2D grid-based representation of the environment M
along with the location x € R? of the robot in the map:

x, = (z, y, 9)7, (D

where (x,y) is the position and 6 the orientation. It is worth
noting that one can use any available SLAM algorithm, such
as only an RGB-D camera [16] or 2D laser [17].

B. Object Detection and Localization

Concurrently to the localization and mapping module
described in Section [[II-A] we perform the detection of the
object classes of interest that are in the field-of-view of the
RGB-D camera. For that, we profit of recent advances on



CNN-based techniques to detect objects and infer the seman-
tic information, i.e., the locations and classes of objects. We
selected the “You only look once” (Yolo) system [8] among
the various available object detection techniques, because
of its low computational effort and high precision recall.
Unlike typical object detection algorithms (such as the recent
Faster-RCNN [6]) that generally decouple the detection into
a large set of classification tasks (using CNNs as ResNet
[18] or AlexNet [3]), Yolo is based on a network model
called Darknet-19 that outputs not only the probability dis-
tribution of the classification of each object class, but also the
bounding boxes for the objects themselves. The processing
is faster, because it only takes a single network evaluation
for each image to generate all the boxes and probabilities.
In short, Yolo divides the input image into a grid with
13 x 13 cells. Each cell contains the center of five different
bounding boxes proposals, where each bounding box has
four parameters (position (x, y), width and height). The final
network layer will have an output of shape 13x13x5(N+5),
i.e., the probability distribution for all cells considering N
object classes. Finally, only those boxes whose probability
overcome a certain threshold are accepted (usually around
0.30).

In the context of indoor scenes, the training images of
Yolo contain classes such as “door”, “chair”, “person” and
“window”. The final output of the system is the object
boxes (encoded by five parameters) at a frame-rate of 15Hz
in a typical PC. Some detection examples can be seen in
Figures [I] and [3]

Model Fitting and Localization

This section describes the localization of the detected
objects and the respective object model parametrization.
Once the objects are detected by Yolo, we localize and fit a
primitive 3D model related to each object class. For instance,
a simple convex hull such as a 3D cylinder primitive can be
used for representing “person” or “chair” classes; and a plane
is a reasonable primitive for representing “door”. The latter
is one of the simplest primitives and we describe briefly how
the processing is made for this case. Assuming that the RGB-
D camera is calibrated and follows the pinhole model, the 3D
point P € R3 corresponding to a pixel p = (u,v,1)T € P?
is:

P(p) = D(p)K 'p, (2)

where D(p) is the depth image and K € R3*3 the intrinsic
camera matrix. Using Equation [2] for all pixels inside the
detected box creates a point cloud where the primitive model
is fitted. For instance, the plane II representing a “door”
object has three degrees of freedom:

I:n"P+d=0, 3)

where n is the normal vector encoding the door orientation
and the distance is d = —n”' P for any point Py € II.

For robustness and efficiency, the model parameters (n, d)
are extracted using RANSAC [19], as well as to find all the
pixels belonging to the model (i.e., all the door plane inliers).

Fig. 3.  Door detection: input image, object detection bounding box,
RANSAC inliers for planar segmentation, object model represented in in
the map.

Optimally, the image color information could also be jointly
employed in the model fitting, we leave this consideration as
future work. The position of the door P((f) is then represented
by the 2D projected centroid of the inlier points given by
RANSAC. Finally, the object position PEIC) (2D projected
centroid) and normal n are transformed from the camera
frame to the global map frame M, in order to build a unique
map representation with the semantic classes:

P, =RPY +t¢ )
n; = Rn, 5)

where (R,t) € SE(2) is the rotation and translation rep-
resenting the current robot pose relative to the map frame.
This is performed for each Yolo object observation denoted
y = (Pg,arctan(n))”. These steps can be seen in Figure

C. Object Position Tracking

Another important concern is how to improve the informa-
tion of the semantic classes in the map given multiple detec-
tions of the same object. It is worthy note that observations
of the same object must consistently be associated with the
same instance across different moments in time. Conversely,
objects that have not been seen before must be instanced as
new objects and stored in memory for future associations. In
this section we present our solution to menage the objects
instances viewed over time in the scene.

We first address the problem of deciding whether a current
object detection have already been observed, or if it is a
new instance. This is handled with a buffer of instances
X = {x¢,X1, ..., X, } and then comparing each new detected
object y with all the previously stored instances in the buffer.
All stored instances in X that match the same semantic class
of the observation are tested using the Mahalanobis distance:

r= mzin \/(y —x)TS; M (y — x,), (6)

where x; is the i-th model of the n matched instances
(¢ ={1,2,3,...,n}) of X and S; is its related covariance
matrix. If the smallest distance r is less than §, we assume
it corresponds to a previously seen object; otherwise, a new
object is instanced.

In order to combine different object observations, each
stored semantic object is modeled temporally with a Kalman
filter to maintain its state up-to-date and combine different
observations. For each new observation of the object, the
measured value is fed into the filter, and it will update the
most probable object position and model (the a posteriori
estate estimate) based on the previous estimation (the a



Fig. 4. Object observations during the robot navigation. The position of
the objects observed over time are shown in pink.

priori estate estimate) and the new observation, as well
as the covariance matrix associated with that estimation (a
posteriori estimate covariance). Since objects of the class
“door” are static, the estate transition and measurement
dynamic models are simply the identity:

{ Xi[k:] = Xl[k — 1] +W[k] and w ~ N(ngl,W),
y[k] = x;[k] + z[k] and Z ~ N (03x1,Z) -
where the random variables (w,z) follow Normal distri-
butions, W is the process covariance matrix and Z is the
measurement covariance matrix.

This framework combines the information of the different
observations as shown in Figure [ The filter initialization
and tunning details are described in Section [V-A]

IV. DATASET

Apart from online experiments, we collected and tested our
methodology on a dataset acquired in an indoor environment.
The dataset contains raw sensor streams recorded from the
robot using the rosbag toolkit. The dataset has a total of
15.2 GB and 5:03 min of duration (303 seconds). It is
also provided with a bash file, replay.sh that runs the
rosbag play command with the correct configurations
used in our experiments (rate, simulation time, topic name
remapping, static transformations, etc.). Another bash file,
slam-replay.sh, has the same configurations, but also
run the SLAM Gmapping algorithm using the parameters we
set. This dataset includes RGB-D images, 2D LIDAR scans
and odometry information whose details are:

e RGB-D: Both RGB and depth images have 640 x 480
resolution, 0.6m to 8.0m depth range and 60° horizon-
tal x 49.5° vertical field of view. The camera used is
the Orbec Astra at 10 HA

e Laser Scans: 180 degrees of scanning range with 0.36°
angular resolution, and 0.02m to 5.6m of depth range.
The data were recorded using a Hokuyo URG-04LX-
UGOL1 at 10 Hz.

e Odometry: This information is provided by the Kobuki
base at 20 Hz. Traveled distance: 108.6m. Max speed:
0.57m/s. Max angular: 1.07 rad/s. Covered Area:
42m x 18.5m.

2The original image frames were streamed at 30 Hz. We throttled this
rate down to 10 Hz, with the purpose of shrinking the dataset size while
maintaining its usability.

Fig. 5. Examples of scenes contained in the dataset and Kobuki base
robot. The first row displays and RGB frame and its corresponding point
cloud visualization. The robot with on-board sensors (RGB-D camera and
2D LIDAR) is shown in the bottom left image.

The footage contains different classes of objects: people,
window, door, bench, table, chair, trash bin, fire extinguisher,
as shown in the images of Figures [I] and 5] Every class
considered static (i.e., all, except for people and chair) have
their location specified in a ground truth map we provide.
We also made available publicly this dataset and network
configuration files used in the object detection module.
This includes yolo-mapping.cfg, containing the network ar-
chitecture; yolo-mapping.yaml containing the class names;
and finally, yolo-mapping.weights, with the trained network
weights used in our experiments.

V. EXPERIMENTS

In this section we evaluate our proposed framework using
our indoor dataset. We start presenting the parameters tuning
used in the experiments and then we show some semantic
augmented map results.

A. System Setup and Implementation Aspects

Our platform consists of a Kobuki base robot with the
same camera and laser sensors described in the dataset
Section [[V] The algorithm is implemented on ROS (Robot
Operational System) and runs at 15 Hz in a laptop with
Ubuntu 16.04, Intel core i7 and Nvidia GeForce 1050 Ti.
Our goal was to initially detect and augment the map with
relevant objects that do not usually change position over time,
and one interesting candidate is to use doors. To this end,
we trained the YOLO object detector with 150+ different
images of doors.

The segmentation step was performed using the Point
Cloud Library [20] implementation of RANSAC. We set
optimize coefficients to true, and the distance threshold to
0.03. We use a value large enough to account for depth
sensor measurement noise, but small enough that the door
and the wall points lie in different planes. To perform object



position tracking, we assume no correlation between the
axis for the filter covariance matrices (i.e., the covariance
matrices are diagonal matrices). We set the Kalman Filter
initial covariance to ;5101 = 3.0; the measurement noise
and process noise to W = 5 x (Isx3), Z = 0.3 x (Isx3),
respectively. Finally, for the data association component, we
set the Mahalanobis to varying values shown in Table

B. Augmented Mapping Results

The experiments were conducted in indoor scenes, con-
taining large corridors with several doors. We tested with
two different approaches for the localization module: one
performing SLAM and another using pure localization on
top of a previously generated map. We show some of the
results for both of these approaches in Figures [6] and [7] The
red dots represent the robot path, purple dots are unfiltered
detected objects and the green lines are the filtered instances.

1) SLAM-based: The idea is to navigate in an unknown
environment, while augmenting the map with semantic infor-
mation. One issue we found with this approach is that during
map generation of large spaces, bundle-adjustment and loop-
closure algorithms will often displace fixed positions, causing
some correctly placed objects to be misplaced. However, we
found that this can be greatly improved by setting a threshold
on the maximum distance of projected objects from the robot.
Conversely, objects seen from far away (greater than six
meters) will not be taking into account, which causes loss of
possibly relevant information.

2) Localization-based: The SLAM module can easily be
substituted by a pure localization algorithm, given the map
and a valid starting position. This approach is useful for
validating accuracy, as it is possible to compare projected
objects positions to the marked ground truth. We tested this
using different values for the Mahalanobis distance. The
results can be seen in Table [l False positives represent the
percentage of objects that were instantiated in excess, whilst
false negatives represent the percentage of objects that were
not instantiated.

Smaller values for the distance threshold tend to cause
a smaller error, but also favors the appearance of more
false positives. That is because successive observations of
the same door might not satisfy the distance condition. We
observe that this is often the case when the objects are seen
again while being revisited after the robot had traveled a
longer distance in and out of the object’s surrounding area. A
reasonable explanation is that the localization module does
not correct the accumulated robot pose error with enough
accuracy, yielding larger deviations of the object’s projection.

For bigger values the opposite is also true. In the case
when two doors are relatively closer to each other, a bigger
threshold will favor both of them to be interpreted as two
different observations of the same object. One possible
optimization to this hurdle would be to take into account
the number of detected objects in the same frame, and
accounting them as separate instances in the filtering stage.

We also found that even a small latency in the object
detection stage (using the neural network) causes objects

TABLE I
RESULTS VARYING THE MAHALANOBIS DISTANCE (0).

6 [m] avg. error [m] std [m] false positives false negatives
0.9 0.46 0.25 27.2% 0%
1.0 0.70 0.49 18.2% 0%
1.2 0.54 0.45 0.1% 0.1%
1.5 0.87 0.63 0% 0.1%

to often be projected in the wrong location in the 2D map
while the robot moves, especially when it is turning. That
is because the object is projected on the map using the
current robot position and rotation, so the movement made
by the robot during the detection stage causes the object to be
positioned in a location different from that which the camera
was facing when the image was captured.

The augmented maps obtained showed interesting results,
as it can be observed in Figures [I] [6] and [7} although we
observed practical limitations that could still be handled.

VI. CONCLUSIONS

We presented a methodology and an open framework for
building augmented semantic maps. We also made available
for the community a dataset containing 2D laser scans, RGB-
D images and odometry. The sensor data is encapsulated in
ROS bag files and is easy of use. The proposed methodology
was tested both offline on the dataset and online, on a real
robot. The framework was build on top of ROS, making use
of the Yolo object detection system based on Convolutional
Neural Networks and a SLAM implementation based on
particle filter. We also utilized other open source libraries
throughout the implementation, such as the OpenCV for
both image processing and the Kalman filter module. The
presented source code is highly modular, i.e., can be easily
modified without the need to change other independent
modules.

A possible extension to the presented work is increasing
the number of classes in the detection step. This might
require elaborating different and possibly more complex ap-
proaches for analyzing the point cloud information associated
with that object. Other classes of objects such as furniture,
appliances, and tools in general, especially organic objects
such as people, animals, and plants would not follow these
constraints and would therefore be harder to model. In the
particular case of extending this approach to movable objects
would imply altering the Kalman filter step, as the proposed
matrices assumed static instances. Another interesting direc-
tion would be to improve the robot localization based on the
semantics of the augmented map, which is seamless to how
humans perform localization and navigation.
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