
MULTI-ROBOT TASK ALLOCATION THROUGH SHARE-RESTRICTED
RESOURCES

Pedro Mitsuo Shiroma∗, Mario F. M. Campos∗

∗VeRLab: Laboratório de Visão Computacional e Robótica
Departamento de Ciência da Computação - Universidade Federal de Minas Gerais (UFMG)

Av. Antônio Carlos n. 6627, Prédio do ICEx – Belo Horizonte, MG, Brasil

Emails: pshiroma@dcc.ufmg.br, mario@dcc.ufmg.br

Abstract— Multi-robot systems can be found nowadays executing several tasks such as environment cleaning,
area surveillance, searching for survivors, and planetary exploration. Among the several problems that arises in
such scenarios, multi-robot task allocation (MRTA) is an important problem that has captured the interest of
researchers for many years. In this work we propose a new methodology to handle the MRTA problem, based on
share-restricted resources. Informally, a share-restricted resource is any resource in a robot or in the environment
that cannot be freely shared among the robots. A coalition of actions is allocated to each task, and each action
defines a set of constraint functions applied to the share-restricted resources, which is used to determine if a
robot can execute a new task or not in parallel with existing tasks. These concepts will grant a robot the ability
to execute multiple tasks simultaneously. Preliminary results in scenarios like obstacle avoidance, multi-robot
routing and object transportation demonstrates the soundness of our solution.

Keywords— Multi-robot task allocation, robot coordination, mobile robots.

Resumo— Sistemas multi-robóticos podem ser encontrados nos mais diversos cenários como limpeza de ambi-
entes, patrulhamento de áreas, busca por sobreviventes, exploração planetária, dentre outros. Dentre os diversos
problemas que surgem nestes cenários, a alocação de tarefas para múltiplos robôs é um importante problema que
tem capturado o interesse dos pesquisadores por muitos anos. Este trabalho propõe uma nova abordagem base-
ada no conceito de recursos com compartilhamento limitado. Informalmente, um recurso com compartilhamento
limitado é qualquer recurso pertencente a um robô ou ao ambiente que não pode ser livremente compartilhado
entre os robôs. Uma coalisão de ações é alocada para cada tarefa e, cada ação define uma função de restrição
sobre o conjunto de recursos com compartilhamento limitado, o qual é usado para determinar se a nova tarefa
pode ser executada em paralelo com as tarefas atuais ou não. Estes conceitos irão permitir a um robô executar
múltiplas tarefas simultaneamente. Resultados preliminares em cenários como desvio de obstáculos, roteamento
e transporte de objetos demonstram a viabilidade da solução proposta.

Palavras-chave— Alocação de tarefas para múltiplos robôs, coordenação entre robôs, robôs móveis.

1 INTRODUCTION

Multi-robot systems is a challenging field that
has been receiving increasing attention in robotics
over the past years. Among the advantages that
such systems presents over single robots, we can
highlight the increased robustness, efficiency, and
higher range of tasks that can be accomplished.
Cooperation has naturally arisen as one of the
main approaches to fully utilize the potential of
each robot in the group. Several issues related to
coordination and control have been considered in
the recent literature, which important results be-
ing obtained. As the number and complexity of
robots increases, distributing tasks among them
has become increasingly important, and is known
nowadays as the multi-robot task allocation prob-
lem. If more than one team is capable to carry out
a task, then an automatic decision process should
be used to select the best team. In a more re-
alistic scenario, new robots can be dynamically
inserted while other robots can fail. Also, their
capabilities are not know a priori, and therefore
the solver must be able to handle the dynamical
insertion and removal of robots when forming the
teams.

Since modern robots are usually equipped

with several sensors and actuators, they poten-
tially have the resources to execute multiple tasks
simultaneously, and an efficient task allocation
mechanism should be able to contemplate these
features. Gerkey and Matarić (2004) proposed a
taxonomy to characterize the MRTA architectures
based on the relationship between robots, tasks
and assignment. According to them, MRTA ar-
chitectures can be classified as: single-task robots
(ST) – robots able to execute at most one task at
a time, and multi-task robots (MT) – robots
capable of executing more than one task concur-
rently; single-robot tasks (SR) and multi-robot
tasks (MR); and instantaneous assignment
(IA) or time-extended assignment (TA). This
work can be classified as a MT-MR-IA approach.

ALLIANCE (Parker, 1998) uses a distributed
behavior-based architecture where tasks are per-
formed by selecting a behavior set. Impatience
and acquiescence attributes are used to trigger the
process of taking over tasks from other robots or
giving up one’s own current task. BLE (Werger
and Mataric, 2000) uses the component and con-
nector software architecture, with behaviours be-
ing modelled as components and task allocation
being the connectors.

In Multi-Agent Systems (MAS) a common

concept present amongst most works is coalition, a
temporary organization of agents that are brought
together in order to solve a specific task. The-
oretical results were conducted by Shehory and
Kraus (1998) to study coalition formation of soft-
ware agents, and were the inspiration of sev-
eral successful works, like ASyMTRe (Parker and
Tang, 2006), where robot capabilities are mod-
elled as schemas, and a task is defined as a set
of motor schemas, for which solutions are au-
tomatically generated by forming a coalition of
schemas; and RACHNA (Vig and Adams, 2006),
which defines a vector of robot capabilities that
is matched against a vector of task requirements.
According to Vig and Adams (2006), a great num-
ber of works developed in MAS cannot be di-
rectly transferred to multi-robot scenarios, be-
cause they do not consider restrictions that arise
with real robots, like losses communication, device
failure, situated agents, dynamical environments,
and non-transferability of resources.

Traderbots (Dias, 2004) is a distributed archi-
tecture which can form local centralized coalitions
based on market theory. It assumes that, if each
robots tries to maximize its own profit, then global
cost will also be maximized. Coordination process
is modelled using both cooperative and competi-
tive robots. Also, tasks are accomplished even
in a scenario with no communication; although
communication will improve efficiency in the gen-
erated solutions. M+ (Botelho and Alami, 1999)
is a decentralized protocol aimed in reallocation
and replanning, which is divided into three lay-
ers: A task allocator, based on the Contract Net
Protocol (Smith, 1980); a fault-tolerance module;
and a task executor module, responsible for the
coordination. The CNP was also the starting
point of several successful works, like MURDOCK
(Gerkey and Matarić, 2002), which uses a greedy
algorithm and a time-limited contract to provide
fault-tolerance. In Chaimowicz et al. (2002) the
task allocation problem is modelled as a hybrid
automaton. Task assignment is treated as discrete
events and the controllers are represented as con-
tinuous states. Therefore, it can potentially share
the benefits of formal analytical machinery devel-
oped for hybrid automata.

Our approach is based on the CNP to
form coalitions of actions and is similar to the
ASyMTRe approach in many aspects. However,
unlike (Parker and Tang, 2006), where the out-
put of motor schemas are summed to generate the
overall behavior, our approach tries to find out a
motor output that will always be admissible for all
allocated tasks. It distinguishes from other related
work because it enables the design of multiple con-
current coalition solutions, each one assigned to a
task, which can include actions belonging to over-
lapping robots. This means that a robot can be
assisting the execution of multiple tasks concur-

rently through the actions, and therefore be clas-
sified as a multi-task (MT) robot.

The multi-robot task allocation problem can
be defined as: Given R = {r1, r2, ..., rm}, a
set of m heterogeneous mobile robots, T =
{t1, t2, ..., tp}, a set of p tasks to be executed,
which can be randomly inserted. Let τi ⊂ R be
a team of robots, and R = 2R be the set of all
teams of robots that can be formed. The problem
addressed in this work can be stated as to find a
function A : T 7→ R such that A(tk) is a team of
robots capable of performing the task tk.

2 METHODOLOGY

Given a team of heterogeneous mobile robots,
our objetive is to assign tasks like box pushing or
transportation to robots as they are inserted by an
external agent, like a human operator.

2.1 Action

We model robot capabilities or skills, such as read

laser, detect obstacles, avoid obstacles, push box,
as a set of actions which are, to some extent, sim-
ilar to the schema concept (Arkin, 1987).

Definition 1 An action is any computational
module that can either produce data, consume
data, or accomplish a task.

Let ai,j be the j-th action in robot ri. Also, let
ni be the total number of running actions in robot
ri. We adopt, similar to Parker and Tang (2006),
a set of information types F = {f1, f2, ..., fp} and
restrict all actions inputs and outputs to be a sub-
set of F. Notice that an action can produce data
by directy reading from a sensor or transform one
information into another, like a range-data to a
list of obstacles.

By defining robot capabilities as a set of in-
dependent actions or schemas (like in (Parker and
Tang, 2006; Vig and Adams, 2006)) it is possible
to transparently handle failures. When a sensor
fails, only the capabilities (actions) that depend
on that sensor output are affected. Thus, if an-
other robot is able to provide the same informa-
tion of the fault module, then consumer actions
will still be able to execute after a reconfiguration.

However, schema-based approaches only
checks for the inputs to determine if they can be
activated. An important aspect in our work is
that, even if all actions’ inputs are available, this
does not necessary means that it is allowed to run
and produce its output data to be sent to another
action. The constraint functions defined later is
the other pre-requisite to activate an action.

Resources like communication link, processor,
battery power and the robot pose have physical re-
strictions that limit the amount of actions that can

be concurrently running. For example, a commu-
nication link cannot exceed the device’s maximum
bandwidth, and hence, higher demands would not
be acceptable. Therefore, our model should refuse
new connections while the link is not capable to
adequately handle new requests. We capture this
concept by the following definition:

Definition 2 A share-restricted resource is any
property in the environment that cannot be freely
shared among the actions.

Examples of share-restricted resources are
robot position, robot energy, communication
bandwidth, and free configuration space. A share-
restricted resource can either belong to a robot
(e.g. energy, position) or be intrinsic to the envi-
ronment (e.g. the free configuration space). Let
iχ = {1,iχ, 2,iχ, . . . , si,iχ} be the set of share-
restricted resources in the environment (i = 0)
or in robot ri (i > 0). For each share-restricted
resource k,iχ, we associate a codomain k,iC which
“measures” the availability of a shared-resource
k,iχ. Each action ai,j defines a constraint function
k,lϕi,j(t) : ℜ 7→ k,lC which measures the amount
of the share-restricted resource k,lχ in robot rl (or
in the environment, if l = 0) required by ai,j at
time t. The space k,lC is defined such that it ac-
cepts two operators, a compound operator:

⊕ : k,lC × k,lC 7→ k,lC, (1)

which is used to “sum” the constraints imposed by
two constraint functions, and a comparison oper-
ator:

≺: k,lC × k,lC 7→ {true, false}, (2)

used to check if the sum of constraint functions
exceed the maximum capacity, k,lϕmax, of the
share-restricted resource. Therefore, if we have
two actions, ai,1 and ai,2, and a share-restricted
resource k,lχ, the sum of the two constraint func-
tions can be denoted as k,lϕi,1 ⊕ k,lϕi,2. Ad-
ditionally, if an action ai,j is not running, we
define k,lϕi,j ⊕ k,lϕr,s = k,lϕr,s. Let’s define:
ni

#

∑

j=1

k,lϕi,j , k,lϕi,1 ⊕
k,lϕi,2 ⊕ ... ⊕ k,lϕi,ni

, as the

constraint imposed by all running actions in robot
ri over share-restricted resource k,lχ. Similarly,

define:

m

#

∑

i=1

k,lϕi,j , k,lϕ1,j ⊕
k,lϕ2,j ⊕ ...⊕ k,lϕm,j ,

as the composition of the constraint functions im-
posed by all robots over share-restricted resource
k,lχ. Therefore,

m

#

∑

i=1

ni

#

∑

j=1

k,lϕi,j ≺ k,lϕmax (3)

can be interpreted as “Does the sum of the con-
straints imposed by all active actions exceed the

maximum capacity of share-restricted resource
k,lχ ?” Next we define the codomain, ϕmax, and
operators ⊕ and ≺ for the most common share-
restricted resources in robotics.

2.1.1 Communication link

Communication, and specially wireless communi-
cation, has been fundamental for the operation of
mobile robots. Packet loss, data corruption and
network disconnection are usual events in real sce-
narios. Bandwidth is the main limitation imposed
by communication links, so we define k,lϕmax as
the maximum bandwidth. Thus, the codomain
for the communication bandwidth C , ℜ, and
the constraint function ϕi,j is the required band-
width by action ai,j to properly execute its oper-
ations. In this case, the ⊕ : ℜ × ℜ 7→ ℜ oper-
ator is defined simply as the algebraic sum, and
≺: ℜ × ℜ 7→ {true, false} operator is the “less or
equal” operator.

For example, if an action ai,1 requires data
size of 100 Kbits at a rate of 100 samples/sec
(totalizing 10Mb/s), action ai,2 requires 40 Mb/s,
and action ai,3 demands 30Mb/s, and the maxi-
mum bandwidth, ϕmax, is 100Mb/s, then actions
ai,1, ai,2 and ai,3 can share the communication
resource since 10Mb/s + 40Mb/s + 30Mb/s ≤
100Mb/s.

2.1.2 Processor

The dynamical aspect of the real world coupled
with the complexity of data analysis of some data
sources, like cameras, turn the robot into a vo-
racious processor consumer. However, in order to
increase autonomy, a robot should rely only in low
power components, which consequently restricted
processing power. Therefore an efficient use of the
processor is essential for any architecture that will
handle task allocation in a complex scenario. It is
specially critical in actions that impose real-time
constraints like low-level controllers.

Thus, we define ϕmax as the maximum pro-
cessing power allocated to the MRTA (disconting
the time allocated to other processes, e.g. oper-
ating system). The constraint function ϕi,j for
an action ai,j is the required processing power for
that action. The operator ⊕ : ℜ × ℜ 7→ ℜ for the
processor is defined as the algebraic sum, and the
operator ≺: ℜ × ℜ 7→ {true, false} is defined as
the “less or equal” operator.

2.1.3 Position

One of the most important share-restricted re-
sources that we must deal with in robotics is the
robot position. The position of a robot is inti-
mately related to the motor and actuator resource
and, for a given action, the commands sent to the
actuators may cause one of three effects: (i) make

the robot advance toward its goal; (ii) be irrel-
evant to the execution of that action; or (ii) be
harmful and provide a negative impact to the com-
pletion of the action.

The codomain for the position resource is de-
fined as the special Euclidean space (C , SE(3)).
The constraints of all actions can then be joined
into the configuration space (Fig. 1) and, if their
intersections is not the empty set, it means that
there exist a set of motor commands that satis-
fies both tasks. Therefore, we have that ⊕ , ∩,
≺,6= and ϕmax , ∅. Remember that the con-

(a) 1,1
ϕ1,1 (b) 1,1

ϕ1,2 (c) 1,1
ϕ1,1⊕

1,1
ϕ1,2

Figure 1: In light gray the constraints imposed
by a survey action. In dark gray the constraints
of a controller. The intersection of the areas (in
white) indicates the admissible velocities for both
actions.

straint function is a timed-function, so the region
can change over the parameter t.

For example, in order to check if actions ai,1,
ai,2 and ai,3 can be executed concurrently, we test
if ϕi,1 ∩ ϕi,2 ∩ ϕi,3 6= ∅ is true.

Note that not only actions that produce ve-
locity commands can impose constraints over the
position of a robot, but actions that read sensors
can also restrict the allowed configuration space.

Suppose, now, that an action is querying the
obstacles in a given region (Fig. 2). In order to
properly answer the query, and consequently keep
the established contract, the robot must stay at
a maximum distance from the region (assuming
an omnidirectional sensor). Therefore, constraint
functions allow us to evaluate if a set of actions
can be concurrently executed by a robot.

(a) Omnidirec-
tional sensor.

(b) Path following
action.

(c) Sum of both
constraints.

Figure 2: A sensor can also constrain the allowed
position of a robot. When the robot reaches the
upper boundary, it must decide which action it
will continue to execute and which one it will stall.

The coalition formation protocol is presented
in (Shiroma and Campos, 2009).

3 EXPERIMENTAL RESULTS

3.1 Simulation setup

The experiments were conducted using the
player/stage/gazebo framework (Collett et al.,
2005). To validate our architecture we designed
a set of three tasks executed by two robots,
namely, transportation, obstacle avoidance, and
multi-robot routing. Each robot is controlled by
an independent client, which is responsible for lis-
tening for new tasks, bid for new auctions, query
for new data, and execute the assigned tasks. All
communication among clients (i.e. robots) is im-
plemented using the TCP protocol. The available
actions to the robots are shown in Table 1.

Action input output goal

route robot-pose – routing

transport robot-pose – transportation

avoid obstacle obstacles – obst. avoidance

detect obstacle range-data obstacles –

read laser – range-data –

read localize – robot-pose –

Table 1: List of available actions.

3.2 Task validation

Although obstacle avoidance is normally defined
as a sub-part of a task’s solution, we choose to
consider it as another task that must be accom-
plished concurrently with the remaining tasks. An
avoid obstacle action, which is responsible to con-
straint the pose share-restricted resource, was cre-
ated to execute this task. The avoid obstacle ac-
tion requires a list of obstacles as input, that can
be produced by a detect obstacle action, which,
in turn, requires range-data produced by a read

laser action. Fig. 3 shows the coalition formed to
perform the obstacle avoidance task.

Figure 3: Coalition formed to execute the obstacle
avoidance task.

In the context of this work, a transportation
task is defined as waypoints (producer and con-
sumer) that a robot must continually and sequen-
tially visit. Poses that drives the robot further
from current distance to the waypoint are marked
as not allowed, and the height of the remaining
poses are computed based on its distance to the
waypoint. The constrained C-space can be repre-
sented by an image, with black pixels correspond-
ing to poses not allowed by an action, while gray
pixels corresponding to poses allowed by that ac-
tion. The brighter the pixel the more attractable

is the corresponding pose. The pose with maxi-
mum height is choose to estimate the velocity that
will be taken.

In this experiment we set the producer to be
at (−5, 0) and the consumer at (5, 0) (Fig. 6(a)).
Four obstacles were spread in the environment,
with two of them in the path that directly con-
nects producer and consumer. In this experiment,
there are two actions constraining the allowed C-
space. The constrained C-space for the avoid ob-

stacle action (fig. 4(e) to 4(h)) and for the trans-

port action (fig. 4(i) to 4(l)) are composed using
Equation 3 (fig. 4(m) to 4(p)).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4: The constrained C-space for the trans-

port and avoid obstacle actions, and their compo-
sition.

Fig. 5 shows the progress of the availability in
the pose share-restricted resource in the previous
experiment. The two depressions for the transport
action corresponds to the robot approximating the
producer and the consumer waypoints. The three
valleys for the avoid obstacle corresponds to the
two obstacles.

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

time [s]

A
va

ila
bi

lit
y

[%
]

Transportation

Obstacle avoidance

Sum

Figure 5: The availability of the pose share-
restricted resource over time.

To illustrate our system’s capacity of handling
multiple tasks simultaneously, a second task is in-
serted after awhile. The second task consists of
visiting all waypoints defined by an 13m × 13m

grid around the origin spaced by 2 meters. In or-
der to accomplish this task, the robot must pass,
at least once, closer to all points within the re-
gion. The route action used to accomplished this
task uses a greedy algorithm, which tries to visit
the nearest waypoint at each instant. It is defined
such that it allows the robot to be at any posi-
tion in the environment, and thus its constraint
function does not affect in the available positions.
However, it does affect the determination of the
velocity that will be used. The height of each pose
is equal to k(1 − d/d0), where d0 is the distance
from the current origin to the nearest waypoint.

Three scenarios were elaborated to test this
setup. In the first scenario, the robot is not al-
lowed to execute multiple tasks simultaneously,
and thus we use these results as the baseline for
the remaining experiments. The second scenario
consists in one robot trying to execute both tasks
simultaneously, which illustrates the main contri-
bution of this work. The robot starts to move off
the line connecting the waypoints defined by the
transportation task in order to accomplish both
tasks, until it reaches an equilibrium and the robot
is no longer capable of executing the routing task
adequately, and eventually it goes on to watch pre-
viously visited areas. At last, in the third sce-
nario, a second robot is inserted in the environ-
ment and it takes control of one of the tasks when
it is detected that it is stalled. The transportation
task was defined such that the robot must move
from the producer waypoint to the consumer way-
point five times. The trajectories performed by
the robots in the third experiment can be seen in
Fig. 6(b).

(a) Experimental setup. (b) Trajectory of two robots
executing two tasks.

Figure 6: Experimental setup: two robots in an
environment with obstacles.

Fig. 7(a) shows the progress of the two tasks
being accomplished separately, which is how we
would expect previous works would accomplished
them. In Fig. 7(b) we can see that, although the
completion time for the first task has increased
(from 535 to 545 sec), the overall completion time
decreased from 908 to 786 sec. The insertion of a
second robot (at time 160) decreased the comple-
tion time even more, to 650 sec.

0 200 400 600 800 1000
0

20

40

60

80

100

time [s]

P
ro

gr
es

s
[%

]

Transportation

Survey

(a) A single robot executing two tasks
sequentially.

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

time [s]

P
ro

gr
es

s
[%

]

Transportation

Survey

(b) A single robot executing two tasks
concurrently.

0 100 200 300 400 500 600 700
0

20

40

60

80

100

time [s]

P
ro

gr
es

s
[%

]

Transportation

Survey − robot 1

Survey − robot 2

(c) Two robots executing two tasks.

Figure 7: The progress of the tasks.

4 CONCLUSION

Although similar to schema-based approaches
(Parker and Tang, 2006; Vig and Adams, 2006),
in our approach, the sum of motor outputs is re-
placed by the position share-restricted resource.
The introduction of share-restricted resources and
constraint function concepts enabled us to clearly
define when two tasks can be concurrently exe-
cuted or when a robot can form a new coalition.
It also allows us to design a system robust to fail-
ures and which presents better performance when
compared to similar approaches in the literature.
Future works will present more complex scenarios
with long-term experiments and more challenge
tasks that will explore the potential presented in
the proposed methodology.

Acknowledgments

The authors would like to thank CAPES, CNPq,
and FAPEMIG for their support.

References

Arkin, R. C. (1987). Motor schema based nav-
igation for a mobile robot: An approach
to programming by behaviour, Proc. of the
IEEE Intl. Conf. on Robotics and Automa-
tion (ICRA), Vol. 4, pp. 264 – 271.

Botelho, S. S. C. and Alami, R. (1999). M+: a
scheme for multi-robot cooperation through
negotiated task allocation and achievement,
Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA), Vol. 2, Detroit - Michi-
gan, pp. 1234–1239.

Chaimowicz, L., Campos, M. F. M. and Kumar,
V. (2002). Dynamic role assignment for coop-
erative robots, Proc. of the IEEE Intl. Conf.
on Robotics and Automation (ICRA), Wash-
ington - DC, pp. 292–298.

Collett, T. H., MacDonald, B. A. and Gerkey,
B. P. (2005). Player 2.0: Toward a prac-
tical robot programming framework, Aus-
tralasian Conference on Robotics and Au-
tomation, Sydney, Australia.

Dias, M. B. (2004). TraderBots: A New Paradigm
for Robust and Efficient Multirobot Coordina-
tion in Dynamic Environments, PhD thesis,
Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA.

Gerkey, B. P. and Matarić, M. J. (2002). Sold!:
Auction methods for multi-robot coordina-
tion, IEEE Trans. on Robotics and Automa-
tion 18(5): 758–768.

Gerkey, B. P. and Matarić, M. J. (2004). A for-
mal analysis and taxonomy of task allocation
in multi-robot systems, The Intl. Journal of
Robotics Research 23(9): 939–954.

Parker, L. E. (1998). Alliance: An architec-
ture for fault tolerant multi-robot coopera-
tion, IEEE Trans. on Robotics and Automa-
tion 14(2): 220–240.

Parker, L. E. and Tang, F. (2006). Build-
ing multirobot coalitions through automated
task solution synthesis, Proc. of the IEEE
94(7): 1289–1305.

Shehory, O. and Kraus, S. (1998). Methods for
task allocation via agent coalition formation,
Artificial Intelligence 101(1-2): 165–200.

Shiroma, P. M. and Campos, M. F. M. (2009).
CoMutaR: A framework for multi-robot co-
ordination and task allocation, Proc. of the
IEEE Intl. Conf. on Intelligent Robots and
Systems (IROS). accepted.

Smith, R. G. (1980). The contract net proto-
col: high-level communication and control in
a distributed problem solver, IEEE Transac-
tions on Computers C-29(12): 1104–1113.

Vig, L. and Adams, J. A. (2006). Multi-robot
coalition formation, IEEE Trans. on Robotics
22(4): 637–649.

Werger, B. B. and Mataric, M. J. (2000). Broad-
cast of local eligibility: behavior-based con-
trol for strongly cooperative robot teams,
Proceedings, 5th International Symposium
on Distributed Autonomous Robotic Systems
(DARS), pp. 347–356.

