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Abstract— We describe a method for visual odometry, us-
ing optical flow, with a single omni-directional (catadioptric)
camera. We show how omni-directional images can be used
to perform optical flow, discussing the basis of optical flow
and some restrictions needed to it and how unwrap these
images, in special how to unwrap omni-directional to a specific
kind of view called Bird’s eye view, that correspond to scaled
orthographic views of the ground plane.

Omni-directional images facilitate landmark based odometry,
since landmarks remain visible in all images, as opposed to
a small field-of-view standard camera. Also, omni-directional
images provide the means of having adequate representations
to support accurrate odometry.

Tests were performed to measure robustness and perfor-
mance of our approach with analysis of the data acquired.

I. INTRODUCTION

Visual sensors are usually low cost sensors suitable
to navigation in structured environments. Particularly,
Omni-directional cameras are efficient sensors because of
panoramic view provided by a single image, see figure 1.
Hence, it is intended using a optical flow method in rectified
images, in order to obtain a odometry estimation of the robot
navigation.

Fig. 1. Example of Omni-directional image.
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Our proposed system can be seen on figure 2. First the pre-
procesing step containing acquisition of the images by the
Omni-directional and camera calibration process. Acquired
images pass though a unwrapping process and following to
extraction of features, these features feed the optical flow
method that estimate motion between consecutive pictures
and passing for a odometry process where the motion will
be transformed to odometry of the robot and return to
unwrapping. These last four steps are defined like Main loop.

Fig. 2. Overview of the system proposed.

This paper is organised as follows. Section II summarises
relevant papers literature in visual odometry and optical flow
with Omni-directional and discusses how it is incorporated
into some of the proposed techniques. Section III shows the
camera calibration used. Section IV describes the fundamen-
tal principles behind Bird’s eye view unwrapping process.
Section V detailed optical flow methods and mathematical
basis and proposes an approach that incorporate optical
flow to implement visual odometry. Section VI presents
experimental results for real data sets which demonstrates the
effectiveness of the proposed approach. Section VII discusses
the principle conclusions and future works.

II. RELATED WORKS

A major problem of robotic navigation based on vision
systems is to get the match in images taken at different points
of view. In the literature, feature matching are extensively
researched in standard cameras [7] [15]. These methods have
been successful in perspective camera, but such methods
can not be applied directly to images obtained from omni-
directional systems, because of the nonlinear distortions
introduced by the wide field of view (eg, decreased radial
image resolution).



To apply traditional methods in Omni-directional images
is necessary to unwrap this pictures, removing distortions of
Omni-directional images [12].

[13], proposes a method for visual odometry using a new
method for removing outliers in the matching process in non-
rectified images.

The present work incorporate Bird’s eye view unwrap
images method, that correspond to scaled orthographic views
of the ground plane [5].

In the case of visual odometry methods using Omni-
directional cameras, there is one work of [3], which has
developed two methods for visual odometry for a planetary
Rover, the first using optical flow and then using iterative
Kalman filter. The work of [4] proposes an adaptation of
optical flow for Omni-directional images without rectifica-
tion, with neighborhood adaptation to solve the problem
of precision loss in furthest regions from the center. The
work [16] comes with a visual odometry system of multiple
cameras and 3D mapping.

For calibrate the camera used in our test, the method
proposed by [11] and toolbox [10] was used.

The present work propose use o optical flow with un-
wrapped images to perform robotic visual odometry.

III. CALIBRATION

First of all we need know our intrinsic and extrinsic
camera parameters to unwrap images. For that was found
in literature the method proposed by [11]. Figure 3 illustrate
one image used on calibration of a set of seventeen images
that were employed.

Fig. 3. Image used on calibration.

Knowing all parameters we pass to the Bird’s Eye View
unwrapping process.

IV. BIRD’S EYE VIEW UNWRAPPING

According to [5], points in the 3D space, P, are projected
as image points, p, by means of a projection operator,P:

p = P(P,Θ) (1)

where Θ contains all the intrinsic and extrinsic parameters
of the catadioptric panoramic camera:

Θ = [L f µ0 ν0]T (2)

The mirror radius can be measured easily, but the camera-
mirror distance, L, focal length, f and principal point,
(µ0, ν0), can only be determined up to some error:

δΘ = [δL δf δµ0 δν0]T (3)

To estimate δΘ we use a set of known 3D points, P i, and
the corresponding image projections pi, then minimize the
following cost function:

δΘ = arg min
δΘ

∑
i

∥∥pi − P
(
P i, θ0 + δΘ

)∥∥2
(4)

This procedure defines a mapping between radial distances
measured in the ground plane and the respective image co-
ordinates, and can be efficiently implemented by means of a
look-up table. It allows us to unwarp omnidirectional images
to bird’s eye view - see Figures 4 and 5.

Fig. 4. Original image.

Fig. 5. Unwrapped image.



V. OPTICAL FLOW

The methods for Optical Flow computing can be catego-
rize into three major groups major: differential techniques,
matching Techniques and frequency energy. The initial hy-
pothesis of optical flow differential techniques is that the
intensity between different frames in a sequence of images
is approximately constant in a small time period, in other
words, in a short time the offset is minimum.

Be I(x, y) the image intensity at time t, it is first assumed
that the time interval dt between two images is very short
and the image intensity does not change this time interval.

I(x, y, t) = I(x+ dx, y + dy, t+ dt) (5)

The above equation can be expanded by the Taylor series
and rewritten as:

I(x, y, t) = I(x, y, t) +
∂I

∂x
dx+

∂I

∂y
dy +

∂I

∂t
dt+ o2 (6)

Clumping the two equations by eliminating o2, which are
the higher order terms, we reach in:

0 =
∂I

∂x
dx+

∂I

∂y
dy +

∂I

∂t
dt+ o2 (7)

where V̄ = (dxdt ,
dy
dt ) are the components of velocity vector

V looked for. The gradient of the image function in x and
y, ( ∂I∂x ,

∂I
∂y ) is called ∇I.

The equation of constraint optical flow becomes:

∇I.v̄ + It (8)

Only the constraint equation above eq.8 is not sufficient
to estimate the components of V, because there are more
unknowns than equations to solve.

The process of determining the optical flow is complex,
because it involves many variables, not always manageable:
occlusions points of interest due to change of perspective
and due to appearance of new objects in the scene, one
aspect very important when dealing with Optical Flow in
real situations is the vibration of the camera and change
lighting, shadows and clouds which modify the intensity of
the images.

A. Lucas-Kanade Method

Using Optical Flow equation 8, we see that a direct
resolution lack of equations for the number of unknowns.
This is known as the problem of openness in optical flow
algorithms. To find the optical flow another set of equations
is necessary [8], given by another constraint. The solution
given by Lucas and Kanade is an not iterative method that
takes a constant local optical flow. Assuming that the flow
(Vx, Vy, Vz) is constant in small windows mxm which m
sizes with m > 1, which is centered in these windows and
numbering the pixels 1, ..., n, a set equations can be found:

Ix1Vx + Iy1Vy + Iz1Vz = −It1 (9)
Ix2Vx + Iy2Vy + Iz2Vz = −It2 (10)
Ix3Vx + Iy3Vy + Iz3Vz = −It3 (11)
IxnVx + IynVy + IznVz = −Itn (12)

With this restriction, there are more equations than vari-
ables and then the system becomes over determined, accord-
ingly.

that can be summarize in eq. 13

Av̄ = −b (13)

To solve a over determined system of equations was
chosen the least squares method:

ATAv̄ = AT (−b) (14)

With the sum ranging from i = 1ton. This means that the
optical flow can be found by the derived from the image in
all four dimensions.

B. Shi-Tomasi Feature Tracker

No feature-based vision system can work unless good
features can be identified and tracked from frame to frame.
Although tracking itself is by and large a solved problem,
selecting features that can be tracked well and correspond to
physical points in the world is still hard [14].

Shi-Tomasi calculates the following matrix:[∑
( ∂I∂x )2

∑
(∂

2I
∂x )∑

(∂
2I
∂x )

∑
( ∂I∂y )2

]
(15)

where I is the intensity of the pixel, ∂x and ∂y and are
the horizontal and vertical displacements of the center of the
window containing the neighborhood.

Then [14] define that a good feature should have two
distinctive qualities, texturedness and corner. When we face



lack of texture, it brings ambiguities in tracking, because
of pixels became much more equivalent resulting in outliers
and false matchings, on fig. 6 we see low texture region and
fig. 7 high texture region . Another problem is images with
a reduced number of corners that is described like aperture
problem.

Fig. 6. Low texture region, gradients with small magnitude, small
eigenvalue.

Fig. 7. High texture region, gradients with large magnitude, high eigen-
value.

A good feature has a high eigenvalue, which suggest
reliable results.

VI. TESTS AND RESULTS

Due to the need of validation of the proposed system, a set
of databases with robotic navigation used as test pattern was
searched [2] [17] [9]. Among the research, was choosen an
dataset provided by rawseeds project [9]. The available data
count with omni-directional camera, whell odometer and a
GPS (used as reference), figure 8 show vehicle used to obtain
the dataset.

Tests were also conducted with the omni-directional sys-
tem that we have available, the test was assembled in the
Pioneer P3-AT robot and tests were done navigating through
corridors of the computer science department, although the
data colleted could not be used, considering that the unwrap-
ping process has a constraint on the image resolution of at
least 640 lines. Therefore, the data could not be used, since

Fig. 8. Vehicle employed for grabbing the dataset.

the camera used, a point-gray dragonfly has a maximum
resolution of 640x480 and the other accessible cameras, for
example, Sony DFW-X700 with 1024x768 resolution, have
an C type assembly(17.52 mm) and is incompatible with the
omni-directional lens(Remote Reality A1168 Netvision 360)
available, which has a CS mount type, that are cameras with
focal flange distance of 12.52mm.

The lens used was an omni-VS-C15MR-Vstone with
hyperbolic mirror, see figure 9 with a Prosilica GC1020C
camera, whole acquisition system(lens+Camera) can be seen
on figure 10.

Fig. 9. Lens. Fig. 10. Acquisition system.

The computer used was a Core i7 920(2.67 Ghz) with 12
Gb of RAM, 320 Gb Hd and a GTX 260 graphic card.

A. Performance Results

First we test the time spend by the both main modules of
the proposed system, see figure 11. This figure shows clearly
that the unwrapping process spend more time than perform
only the optical flow, the overhead add by this routine can
be seen on table I.

B. Optical Flow Results

In relation to optical flow figure 12, illustrates the optical
flow performed in our tests. Figure 13 shown the number
matchings, we have no more than 400 features extracted



Fig. 11. Processing time of main modules.

TABLE I
STATISTICAL VALUES OF MODULES AND COMPLETE SOLUTION.

Module Mean(miliseconds) Standard deviation Fps
Optical Flow 21 0.9 47
Unwrapping 30 1.1 33

Solution 50 1.39 20

per frame this number set by user. The average number of
correspondences in Figure x is 44, which generates a value
of 11% in the number of extracted features.

Fig. 12. Optical Flow example.

C. Visual Odometry Results

The first test was performed in a 3.35 meters route moving
in straight line. Tests were executed with people passing
by(which disturb optical flow) and artificial and natural
lighting. Figure 14 on vertical axis are represented odometry
values of the robot taking into account his move in x
and y axis and ilustrating at the red line(y axis) his final
position(3.10 meters), which compare to groundtruth of 3.35
meters get an error in position of about 7.4%.

Fig. 13. Number of matchings.

Fig. 14. Results of first test.

The second test was performed in a 7.55 meters route
moving in straight line. The second test were executed in a
corridor with a uniform structured(low texture in some parts
only a white wall), people passing by(which disturb optical
flow) and artificial lighting. Figure 15 on vertical axis are
represented odometry values of the robot taking into account
his move in x and y axis and ilustrating at the red line(y axis)
his final position(6.64 meters), which compare to groundtruth
of 7.55 meters get an error in position of about 12%.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we presented a method for visual odometry
using an omni-directional camera. One of core observations
is that wide range cameras have positive aspects that a
standard one do not, a landmark tracked on catadioptric
images remain observable for a longer time and make visual
odometry approaches based on then more robust. In partic-
ular, we described a method for obtaining a bird’s eye view
of the ground floor, that greatly simplified omni-directional
optical flow strategies, by removing perspective effects.

Experiments of the proposed approach were presented.
Finally we saw that visual odometry is an important and

powerful tool to estimate the motion in image sequences,



Fig. 15. Results of second test.

many studies are conducted each day to its improvement
and optimization computational seeking answers in real time.
This research area is vast and still rising.

In the future, we will apply this methodology in more
complex environments and test other approaches to solve
visual odometry, like Appearance-based odometry [6], more
specific methods to feature extraction on omni-directional
images [1] and fix the unwrapping resolution limitation.
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