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Abstract

This work proposes to study the IPP, Inverse perspec-
tive projection, and some techniques for solid modeling in
order to deal with the point cloud from stereo vision pro-
cedure and to represent the objets in a data structure more
accurate for post processing like mesh simplification that
avoids dense redundant vertex representation for planar re-
gions. In our experiments, we used a feature-based strat-
egy to obtain a partial disparity map from correspondent
edges in two stereo images and constructed a dense dispar-
ity map interpolating the previous partial map. This dispar-
ity map and a known camera calibration system leads to
a 3-D scene reconstruction in a regular ranger image ma-
trix. Then we write this output triangular mesh in a topolog-
ical data structure and apply a mesh simplification strategy
to obtain an optimized representation to the scene model.

1. Introduction

The problem of Inverse Perspective Projection, IPP, is re-
lated to the problem of stereo vision. The goal is to obtain
3-D information from a set of, at least two, digital images of
a scene. In general, the problem is treated separately in tree
specific problems: Calibration, Correspondence and Recon-
struction. The calibration process intend to get the projec-
tion matrix or the intrinsic and extrinsic camera parame-
ters. The correspondence problem relies on reaching points
in different images that are associated to the same point in
the scene. Finally, the reconstruction problem deals with the
problem of building the 3D scene geometry combining the
disparity map from correspondence results and camera cali-
bration parameters. A big challenge in all process of recon-
struction is to solve the correspondence problem to build the
disparity map, that serves as input for the well resolved al-
gorithms of reconstruction. However, the correspondence,
or matching, algorithms usually takes a point in one image
and tries to find its correspondence in the other image us-
ing some similarity criterion based on a neighboring region

of the two image points, witch is an ambiguous match since
many regions of the same image may attend this similar-
ity. Some knowledge about the cameras calibration during
the images acquisition can reduce the problem of search-
ing a point from one image over the entire other image to
the problem of searching over a reduced region. In fact, the
epipolar geometry allows to reduce the search region to a
line, or a 1-D segment, that is, anyway, an ambiguous prob-
lem, specially for points that belong to the flat regions with-
out texture. The ocorrence of texture, in fact, reduces am-
biguity, giving a stronger signature to each point in the so
called Correlation-based methods. Other approach, called
Feature-based methods tries to match specific set of points
in the images that are related to some significant feature.
This method require a pre-processing step of feature-detect
in both images and, then, search for corresponding feature
in the images according to the feature descriptors. In this
work we assume images from a structured scene with easy
geometry description, without texture to allow good results
in edge detection algorithms for, then, use a Feature-based
matching algorithm to build a disparity map interpolating
results from feature matching. The principal contribution
with this work is a post-processing to the range image, af-
ter the scene reconstruction, in order to obtain an optimized
representation to the scene with a mesh simplification step
that resume large planar regions from the scene to a para-
metric patch description. This optimized polygon based rep-
resentation is extremely efficient and largely used in solid
modeling for CAD, game development, math research and
medical 3-D image processing because of its hight expres-
siveness, low storage cost and hight processing performance
for rendering and motion modeling.

2. Prior Works

The problem of stereo vision has a definition in the ar-
ticles from Barnard and Fischler [1]. The work of Koschan
[9] presents some techniques for treating the problem and
the evolution of stereo vision, and the work of Brown et
al [2] presents a comparison of stereo vision methods that,



usually, give more attention to correspondence problem
then to calibration an reconstruction.

The problem of calibration is treated with algorithms
which are able to estimate, explicitly, the intrinsic and ex-
trinsic parameters or to estimate, directly, the projection ma-
trix as discussed from Trucco and Verri [13] and is well
treated in literature as in works from Faugeras and Luong
[5] and Hartley and Zisserman [7].

The problem of correspondence is a key in stereo vision
and, because its ambiguity [4], several assumptions are usu-
ally made for particular solutions and make it hard to find a
general solution to the problem. The assumptions on corre-
spondence may be geometric, about the projection point of
the camera or objects shape, or radiometric, like assuming
that the light model and surfaces in the scene are lamber-
tians. Such assumptions, by one side, simplify the solutions
but, by other side, bring doubts to the results as long as the
real scene diverges from the assumptions. Brown et al [2]
classifies the correspondence methods in local and global
and gives some references of work in each method.

The problem of reconstruction, or 3-D perception, is re-
lated to the understanding of difference, or disparity, be-
tween correspondent points in distinct images from the
same scene. The disparity calculated in all image points,
define the disparity map [13] that, in this case, intend to es-
tablish a relationship among the projection points and their
corresponding point in 3-D space. This process and its re-
sult is strongly depending of the results from the problems
of calibration and correspondence [2].

Most work in stereo vision doesn’t take in account the in-
fluence of environment, assuming ideal vacuum light propa-
gation but, in practice, different environment like underwa-
ter require a special treatment to deal with light refraction,
as shown in the work of Neto at al [11]. Another research
area, complementary to this, called solid modeling develops
data structure to store and process geometrical models far
better than the point clouds structure gotten from stereo vi-
sion. Such data structures, like the simpleCorner− Table
presented by Lopes and Rossignac in [10] allows compres-
sion, re-mashing and mesh simplification operations. Vieira
at al presented, in [14], an application ofCorner − Table
data structure to implement the mesh simplification algo-
rithm proposed by Heckbert and Garland in [6]. This work
intend to go trough the stereo vision process using den-
sity images as input and output a scene representation more
forehanded then the usual range image.

3. Methodology

To develop the work that we propose for this article, we
need to obtain 2 stereo images from a semi-structured scene
and process them in order to obtain a 3-D description of
the scene in a simplified mesh data structure. The method-

ology we will use for such work is described in the fol-
lowing steps: image acquisition, edge detection, correspon-
dent edge matching, interpolated dense disparity, 3-D re-
construction from disparity map, topological mesh descrip-
tion and mesh simplification. In order to detail each step,
we treat them separately in a subsection for each.

3.1. Image Acquisition

The images used in our experiments are acquired from
static scene of objects with well defined geometry and with-
out dense texture. We consider a Lambertian surface re-
flectance model and assume a simple calibrated stereo sys-
tem composed of two pinhole cameras with parallel opti-
cal axes and the same focal length. The Figure 1 illustrates
this model as presented in [13].

Figure 1. Simple Stereo System.

The left and right imagesIl andIr will be the input for
the next steps.

3.2. Edge Detection

In the edge detection step, we apply a gaussian noise fil-
tering to suppress as much of the image noise as possible
and use the Canny edge detector, as in [3], in both images
in order to output two binary imagesEl andEr with bor-
der pixel sets.

3.3. Correspondent Edge Matching

As stated in the literature of stereo vision, global match-
ing is a widely difficult task, as shown for Scharstein and



Szeliski in [12], specially for imagesI with large flat re-
gions poorly textured. Such images can be characterized for
large regionsR with null gradient.

∇I(p) = (0, 0), p ∈ R

However, incident regions with null gradient use to have
sharp transitions with strong gradient that lead to good edge
detection. Then we’ll assume as input, in this step, the pre-
processed binary imagesEl andEr with border pixel sets
gotten as output of prior step Edge Detection.

E(p) =
{

0 , p 6∈ border
1 , p ∈ border

Then, using the Hough transform for lines [8], we give a
signature to each lineLl ∈ El andLr ∈ Er, so that each
line L ∈ (El ∪ Er) has a feature descriptorL = (l, o, x, y)
where:

• l is the lenth

• o is the orientation

• (x,y) are the midpoint coordinates

Using such descriptor for two linesLl andLr in the dis-
tinct images, we compute their similarity using the sum of
weighted square distance, S, among the proprieties in the
descriptors:

S = a(ll − lr)2 + b(ol − or)2 + c(xl − xr)2 + d(yl − yr)2

wherea, b, c, d are weights, and subscriptsl andr refer
to the left and right image, respectively.

Finally, we use this similarity measure to run a feature
matching algorithm that outputs a list of corresponding lines
in both images. The partial disparity mapD, is than calcu-
lated from the corresponding lines.

3.4. Interpolated Dense Disparity

Using the partial disparity mapD, calculated for each
border line in the previous step, we assume flat regions de-
fined by the borders and than estimate the disparity in each
point as a linear interpolation of border disparity. The pro-
cess describe a scan-line that, given a linei of D, start
from the pixel(i, 0), get the disparitiesd1 = D(i, j1) and
d2 = D(i, j2) from the first pair of border pixels(i, j1) and
(i, j2) to calculate the disparityD(i, k) as

D(i, k) = d1 +
k − j1
j2 − j1

(d2 − d1)

for eachk ∈ [j1, j2].
By repeating this process for each line of the partial dis-

parity map, we construct, as output, a dense disparity map
D assuming flat regions defined by the borders.

3.5. 3-D Reconstruction

In our simple stereo model used for acquisition, the left
and right images were coplanar with parallel optical axes,
common focal lengthf and known baseline with lengthT .
Hence, using the disparity mapD, as input, we can com-
pute the depthZ for each point using triangular similarity
that leads to the equation

T − d

Z − f
=

T

Z

whered is the point disparity and, solving forZ, gives

Z = f
T

d

Now we have a range map, that we callM , represent-
ing a regular6 × 6 triangular mesh with vertices geometry
(i, j, M(i, j)) and easy regular topolgy descriptor as out-
put.

3.6. Topological Mesh Description

In order to resize the mesh, removing redundant informa-
tion, especially in large planar regions of the reconstructed
surface, we should model the mesh in a special data struc-
ture to deal with triangles of arbitrary size instead of regular
matrix representation. A very concise data structure for tri-
angular meshes, like the Corner–Table (CT), servers to our
goals. The CT uses the concept ofcorner to represent the
association of a triangle with one of its bounding vertices,
or equivalently the association of a triangle with its oppo-
site bounding edge to that corner.

In this data structure, the corners, the vertices and the
triangles are indexed by non–negative integers. Each tri-
angle is represented by 3 consecutive corners that define
its orientation. For example, corners 0, 1 and 2 correspond
to the first triangle, the corners 3, 4 and 5 correspond to
the second triangle and so on. . . As a consequence, a cor-
ner with indexc is associated with the triangle of index
trig(c) = floor (c/3).

The Corner–Table data structure represents the geome-
try of a surface by the association of each cornerc with its
geometrical vertex index V[c].

Assuming a counter–clockwise orientation, for each cor-
nerc, thenext(c) andprev(c) corners on its triangle bound-
ary are obtained by the use of the following expressions:
next(c) = 3 × trig(c) + [(c + 1) mod 3], andprev(c) =
3× trig(c) + [(c + 2) mod 3].

The edge–adjacency between the neighboring triangles
is represented by associating to each cornerc, its opposite
corner O[c], which has the same opposite edge. This infor-
mation is stored in two integer arrays, called theV andO
tables. Figure 2 shows an example of a Corner–Table repre-
sentation for a tetrahedron.



Figure 2. Tetrahedron example.

The CT concisely represents the connectivity of a trian-
gular mesh using only the arraysO andV . To represent the
mesh geometry, an arrayG is used to store the geometry of
the vertices (coordinates, normals,...).

3.7. Mesh Simplification

The mesh simplification process uses topological opera-
tors to remove vertices from the mesh while maintaining the
mesh structure consistence during simplification. The deci-
sion of witch vertex to remove is based on a local cost es-
timator that evaluates the geometrical distortion caused by
a vertex removal operation. In this section we describe the
topological operator Edge–Collapse and a geometrical cost
estimator called Quadric Error Metric from [6].

The Edge-Collapse operator consists in removing an
edgee = (u, v) from a surfaceS, identifying its vertices to
a unique vertexv. From a combinatorial viewpoint, this op-
erator will remove 1 vertex, 3 edges and 2 faces from orig-
inal mesh, thus preserving its Euler characteristic. From a
geometric viewpoint, the new position of the vertexv can
be computed with the geometry aroundu andv.

Figure 3. Edge Collapse.

The figure 3 illustrates the collapse of an edgee =
(u, v), identified by the cornerc0 and the following algo-
rithm, from [14] details de process.

EdgeCollapse(c0)
c1 = next(c0); c2 = prev(c0); c3 = O[c0];
c4 = next(c3); c5 = prev(c3);
a = O[c4]; b = O[c5];
d = O[c1]; c = O[c2];
i = c2;
Do

V [i] = V [c1];
i = next(right(i));

While(i! = c2);
O[a] = b; O[b] = a;
O[c] = d; O[d] = c;

The Quadric Error Metric presented in [6] is an efficient
geometrical cost estimator widely used in mesh simplifica-
tion algorithms. This method evaluates a costCe for col-
lapsing an edgee = (u, v) in a resulting vertexw as

Ce = wt(Qu + Qv)w

where,

Qv =
∑

Qi

with Qi defined, for each triangular facefi incident tov,
as

Qi = n.nt =


n2

x nxny nxnz nxd
nxny n2

y nynz nyd
nxnz nynz n2

z nzd
nxd nyd nzd d2


andn = (a, b, c, d), the implicit parameters to the plane

(ax + by + cz = d) support of a triangular facefi.
This cost is an estimation of the total slop suffered for

planes incidents to the verticesu and v if they were col-
lapsed and allows a greedy simplification algorithm that
removes vertices from the mesh until a stop condition is
reached. This stop condition may be based in the number of
vertices to be removed or a threshold limit to the accumu-
lated geometrical error.

4. Experiments and Results

Our experiments were made using a computer with the
following configuration:

• Hardware: Notebook Dell Inspiron 1525 with an Intel
Core 2 Duo CPU of 2.00 GHz and RAM memory of
2.00GB.

• Software: Operational system of 32 bits MS Windows
Vista, compiler Visual C++ and graphic library re-
sources of OpenGL.



We built a geometrical model of a polygonal surface with
12 nonparallel triangular faces and used a virtual camera to
take front parallel stereo image pairs with different known
baselines in order to verify the correctness of our method to
obtain the disparity map. Figure 4 details this model.

(a) Rotated projection (b) Z axe projection

(c) Y axe projection (d) X axe projection

Figure 4. Geometrical model.

Using such model, we got a sequence of8 stereo image
pairs with our virtual camera whose baselines were2, 4, 8,
16, 32, 64, 128 and256, respectively. Then, for each stereo
pair, we used a feature detect filter to find the edges from
both images and, using a feature match algorithm as pre-
sented in section3.3, we got the correspondent edge pairs,
for baselineT = 64, as shown in Figure 5 (a) in red color
for left image and blue for right image.

The disparity were, firstly, calculated for the edges, us-
ing the correspondence already known for the edges. The
Figure 5 (b) shows, in gray scale for intensity, the dispar-
ity calculated for the border images in (a).

The full disparity map were, than, calculated using this
partial map, as the interpolated disparity value for each im-
age point according to the algorithm presented in section
3.4. The Figure 5 (c) shows, in gray scale for intensity, the
the disparity calculated for all points interpolating edge val-
ues as shown in (b).

As we measure disparity in pixels, we observed that, rel-
atively small value of baseline causes the disparity to have
too strong discontinuities and, in order to have a more con-
tinue and smooth disparity map, we need a greater value
for baseline. Though, we have also observed that, relatively
large values of baseline causes the algorithm to mismatch
corresponding features. This occurs because as long as we

(a) Feature image pair

(b) Partial disparity map

(c) Full disparity map

Figure 5. Constructing disparity map.

enlarge the baseline, we also enlarge the space for ambigui-
ties that lead to false positive match. To illustrate this effect
we show in Figures 6 and 7 the full disparity map calcu-
lated for our sequence of8 stereo pair with exponential in-
creasing value for baseline.

To develop the 3D reconstruction we used the expres-
sion presented in section3.5 that uses only the fixed base-
line and focal length that, in our virtual camera, were set to
200 since we put the projection center toz = 50 and the im-



age plane toz = 250. Hence we had a focal lengthf = 200
and, in each experiment, we saved a range image recon-
structed using the corresponding disparity map. Since we
knew the range value for each real point in the scene, we
than calculated an error associated to each stereo pair us-
ing accumulated absolute value of difference for each point
as shown in Table 1.

Baseline Error Error
Pixel Error %

2 48.193.845 201 47.81
4 31.602.195 132 31.35
8 17.403.090 73 17.26
16 11.760.110 49 11.67
32 8.236.862 34 8.17
64 3.486.456 15 3.46
128 9.948.274 41 9.87
256 26.614.962 111 26.40

Table 1. Error comparison.

In table 1, the second column have accumulated error in
all pixels, third column have average error per pixel and last
column have a percentage error in the real range of each
pixel.

Using the range image representation for the recon-
structed scene we need a600 × 400 integer matrix for the
entire surface representation. Applying the mesh simplifica-
tion as presented in section3.7 we were able to reduce this
representation to only57 vertices taking3 integer coordi-
nates each and a topology representation that takes106 in-
tegers. In practice, this representation could be reduced to
only 11 vertices and a topology representation taking only
36 integers if the disparity map gave us a 3D reconstruc-
tion without any error, so that each planar face could be
correctly delimited for the simplification algorithm.

5. Conclusion and Future Work

We have studied, in this work, the IPP, Inverse perspec-
tive projection. In our experiments, we used a feature-based
strategy to obtain a partial disparity map from correspon-
dent edges in two stereo images and constructed a dense
disparity map interpolating the previous partial map. This
disparity map and a known camera calibration system leads
to a 3-D scene reconstruction in a regular ranger image ma-
trix. Then we write this output triangular mesh in a topolog-
ical data structure and apply a mesh simplification strategy
to obtain an optimized representation to the scene model.

We had to dedicate special effort to implement the cor-
respondence step of our pipeline, so that we realized, as
confirmed in the dense literature in the issue, that corre-
spondence is a key in stereo vision and a difficult problem

to solve. Our strategy was to explore the process of stereo
vision applying to a structured geometrical model without
texture in order to use a feature based match algorithm that
was able to build a partial disparity map in the edges that
was than extended to a dense disparity map using interpo-
lation. This method as shown efficient in our mathematical
model and we intend to extend this to real stereo image pairs
using arbitrary camera position instead the simple front par-
allel used here. Although our results didn’t bring any inno-
vative development to the stereo vision research at all, is
was a useful workout to absorb the principal concepts and
challenges of this area.
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(a) Baseline 2

(b) Baseline 4

(c) baseline 8

(d) baseline 16

Figure 6. Influence of baseline from 2 to 16.



(a) baseline 32

(b) baseline 64

(c) baseline 128

(d) baseline 256

Figure 7. Influence of baseline from 32 to 256.


