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Abstract

in order to correctly reconstruct a dynamic scene via
stereopsis we are required to have images obtained at the
same time instant, if we are to apply stereopsis to a pair
of video sequences we have to guarantee that the video se-
quences are synchronized.

Obtaining the synchronization for video sequences can
be complex and potentially costly task. This paper treats the
problem of estimating the temporal relation between two
unsynchronized video sequences obtained from the same
scene. It describes a simple algorithm for estimating the
temporal offset of a pair of video sequences. The algorithm
is based on pairwise frame correspondence using a similar-
ity measure for estimating the temporal similarity between
two given frames. The matching is performed by searching
for every frame in one of the sequences the frame within
a temporal search region in the other sequence that max-
imizes the similarity. We describe a method by which the
frame search region for the corresponding frame can dy-
namically, estimated, prove that under certain statistical as-
sumptions the corresponding frame is expected to lie inside
the search region and empirically demonstrate the effective-
ness of our method based on experiments performed with
ground truth data.

1. Introduction

In multiple view scene reconstruction, the images ob-
tained from the scene are required to be acquired at the
same time instant in order to effectively recover the 3D
location of a projection point via triangulation. When re-
constructing a dynamic scene from video sequences we are
required to know the temporal alignment between the se-
quences. Although some times this temporal relation can be
given to us by hardware, or obtained manually, there are
cases, such as prerecorded videos, in which hardware syn-
chronization is not available, and manual synchronization is

too time consuming. In such cases other software synchro-
nization methods can provide significant savings in time and
cost. The temporal relation between the sequences is esti-
mated in this paper by using a sequence to sequence corre-
spondence strategy, and by fitting the correspondences to a
line. It searches for a given frame at one of the sequences
(the reference sequence) the corresponding frame in the tar-
get sequence as the frame within a search region in the other
sequences that maximizes a temporal frame similarity mea-
sure, the similarity between to frames is measured as in-
verse to the “noise” estimated in an affine stereo self cal-
ibration. Having obtained the correspondence the tempo-
ral alignment of the sequences is then matched to a linear
model, We present a method by which the search region for
the corresponding frame is dynamically estimated based on
the absolute errors of the past correspondences and show
that it tends to encompass the correct corresponding frame
under reasonable assumptions.

The next section provides a quick revision of existing
methods for estimating the synchronization and some other
methods related to this work, Section 3 states assump-
tions and provides a formal definition of the problem being
treated, Section 4 describes how the synchronization can be
achieved and closes by defining an algorithm for estimat-
ing the synchronization, Section 5 describes implementa-
tion and test platform as well as show results to some of the
tests, Section 6 presents the author’s conclusions about the
method and comments on possible improvements.

2. Related Work

Tomasi and Kanade[11] noted that, under the assump-
tion of an affine projection, a 2V x N matrix of [NV point
projection across V' views (Measurement matrix) is given
by a product of a 2V x 3 projection matrix and a 3 x N
matrix containing the world points. and by consequence the
rank of a perfectly matched measurement matrix is bounded
above by 3.

Wolf and Zomet[13] noted that the rank 3 constraint



for the measurement matrix is only valid for synchronized
scenes and proposed an correspondence free algorithm for
synchronizing multiple sequences of the same scene by
minimizing the rank of a tracking state stack matrix. Tre-
sadern and Reid[12] based on the work of Wolf and Zomet,
developed a method for temporal alignment of image se-
quences of the same scene which uses as a similarity mea-
sure the the smallest singular value of a measurement matrix
composed by interest point matching and correspondence,
and deals with outliers in the sequence matching by using
the RANSAC[4] algorithm. The problem of temporal align-
ment was also treated by Caspi et al[10] who developed an
algorithm which synchronizes based on the correspondence
between object trajectories obtained in both sequences and
Cardeal[3] in his thesis improved on the method proposed
by Caspi by extending it to N different views for any arbi-
trary N > 2, this work was inspired on the work of Reid
and improves on that work in the sense that the search re-
gion for the matching frames is dynamically estimated by
means of absolute error in the frame correspondence and
by doing so decreases the ambiguity generated by periodic
movements in the scene, and produces a great increase in
speed.

As in the method proposed by Reid and Tresadern, our
method has to deal with the problem of interest point detec-
tion and matching, they resolved point correspondence is-
sues by using a set of markers to define the interest points,
in this work we automatically detect and match points us-
ing only image information by using a feature detector
(SURF). The problem of interest point detection is traced
at Moravec(1981)[9] which detected a corner as a point in
the image with low self similarity, his work was followed
by Harris(1988)[6] who developed Harris corner detector
probably the most widely used corner detector in history,
the main problem with these detectors is the influence that
image scale has on the result. Lindeberg[7] introduced the
concept of automatic scale selection, and Lowe[8] used dif-
ference of gaussian to perform scale space analysis and cre-
ate a method for point detection and correspondence named
SIFT. Bay[1, 2] focusing on, efficiency, approximated the
difference of gaussian filter with box filters to create a in-
terest point detector called SURF which is robust and ex-
tremely efficient when compared to other methods.

3. Problem Formulation

Assuming we have 2 sequences to be aligned, let the se-
quences be defined by S1 = {f}, fs,...fl} and S; =
{f2,f3,..., f%} where fI correspond to the j-th frame
of the i-th sequence, let 7( ff ) = 7;(i) be time of cap-
ture the frame fij , the problem of temporal alignment can
be formally defined as the problem of finding an relation

r(i,j) = {n(i) = 72(j)}-

Now assuming that both sequences have constant fram-
erates defined by F'R; and F'Rs we have:
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And the problem of temporal sequence alignment is sim-
plified to finding a line : = o + (5.

4. Methodology
4.1. Synchronization Rating.

If the depth variation of the observed scene is relatively
small we can approximate that the projection (u, v¢) in the
c-th view of every point (X, Y, Z) in the scene by an affine
projection given by:
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Now if we have n different points on the scene we can
define a measurement matrix W as:
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where every [uSvf]T correspond to the projection of the

i-th scene point observed by the c-th view.

This matrix for perfectly matched points projected at the
same time instant has rank bounded above by 3 as was noted
by Tomasi and Kanade, not only that if [u}v}] and [u?v?] are
projections of the same object point at a different time in-
stant and the object point is at different positions in the cor-
responding instants than the rank of W the rank bound does
not apply as noticed by Wolf and Zomet.

If we define a sequence of M frames to be a window
frame, and one of the two sequences .S and S5 as the refer-
ence sequence Sy s and the other as the target sequence Sy
we can define a matrix W (F, f) for each frame F' € S,y
f € Sig as:
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where [uizvil]T corresponds to the projection of the i-
th feature in the j-th frame of the sequence c.

If we have perfectly identified and matched N features
points across the video frames we can expect that the rank
of W(F, f) tobe 3 only if frames F and f were captured at
the same time instant, in practice however noises generated
by the camera, pixelization and incorrect matching almost
always will cause W(F, f) to have full rank.

By decomposing the matrix W(F, f) in singular values
we can expect the smallest singular value of W (F, f) to be
determined only by the system noise if F' and f were cap-
tured at the same instant, and by noise plus some amount
otherwise, so we can search for every frame F' € S, the
frame f € Sy, that minimizes the smallest singular value
of W(F, f) as the corresponding frame and fit the obtained
pair (F, f) to a line.

Figure 2. Unsynchronized frames.

The W (F, f) when applied to the perfectly synchronized
frames in Figure.l have a smallest singular value of 23.34
(in pixels), when applied to the unsynchronized frames in
Figure.2 have a smallest singular value of 206.49

4.2. Search region for synchronized frame

One issue with this method is that if we have ambigu-
ity in the scene (like periodic movement)[12, 3] the outliers
generated will reduce the quality of the result, and the other
is that searching every frame in the target sequence can con-
sume a large amount of time.

If the space being examined is large the probability of
generating false matchings increases and the outliers gen-
erated in the correspondence can compromise the quality
of the result. The solution to the outlier problem proposed
in Reid’s work is to use an method robust to outliers like
RANSACI4], but this would also have to deal with the prob-
lem of the space search. This work deals with both prob-
lems by dynamically estimating a search region for the cor-
responding frame that is centered at the expected location
for the corresponding frame and decreases in size propor-
tional to the estimated absolute error of the collected in the
last k frames.

The estimation method works as follows:

given an initial estimation for the temporal correspon-
dence (j = a + 3 - 7) and an initial search range S Ry.

1. for every frame F; € S,.¢, search frames between

fa+si—sr, and fo4git+sr, for matching frame f; us-
ing the singular value metric.

2. using least squares method update estimation of j =
a+ 6.
3. obtain absolute error AF for the last k points.

4. update search range SR; <— v-SR;_1 +0- AE + ¢

k, 7, 0 and € are constants defined empirically where
0 < v < 1 and § is proportional to % Intuitively what the
search range update does is smoothly increase the search
range as the absolute error in the last points become greater
and smoothly decrease when the absolute error becomes
smaller. € ensures that the search range doesn’t drop to zero.
The search range variation is:

SRi — SRi_l =7 SRi_l + 0-AF +€— SRi_l =

(S'AE'FG— (1 —"}/)SRi_l

So the search range increases whenever 6 - AE + ¢ >
(1—-~)SR;—1 < AE > % and decreases oth-

erwise, and the search range never becomes smaller then
€

1—v"
Also if the corresponding frame is not within the search

region, if we assume that the matching will return a ran-
dom frame in the search range we can expect the average
absolute error for the frame ¢ frame to half the search range
AFE = % if we are considering the search range for the
last k frames then the expected absolute error will be on av-
i—1
erage Z SRy it can be proven that under these assump-
l=i—k

tions, given good choices for & , vy, § and ¢ if we are looking
for the matching frame in the wrong region then the search
range grows exponentially. The proof for the case where
k = 1 follows:



SR;=7v-SR;,_1+0-AF +eand AE = 5321'71 =

0
SR; = (’7+ 5) -SR;_1+¢

So if we choose ~ and & such that (y+ ) > 1 fork > 1
we can say that the search range grows exponentially while
the corresponding frame lies outside the search region.

Now if we assume that a good matcher will give us the
corresponding frame with an absolute error that is in aver-
age a constant C the search region tends to:

gR, = 2 Cte
1—xv

So under these assumptions our search range will de-
crease if the corresponding frame lies within the search re-
gion and will exponentially increase if the corresponding
frame is not in the search region we are looking for. So the
corresponding frame can be expected to be included in the
search region for the next frames.

Note that the static assumptions made here are not valid
for every scene, if the scene presents periodic movement the
search region can converge to a local minimum if the ini-
tial search region is poorly estimated. However if the scene
presents little ambiguity then the assumption is a reason-
able one, one possible way to deal with local minimums
due to periodic movement is to randomize the matching or-
der of the reference sequence frames, as the random order
of the matching decreases the chance that the search region
will include a local minimum.

4.3. Point detection and correspondence.

In order to construct matrix W we have to detect and
match interest points in the frames being examined.

For the point detection and matching we chose to work
with Bay’s detector SURF based of it’s efficiency and the
robustness of it’s descriptors.

the SURF detector return’s a set of image points and de-
scriptors for each point, the point descriptors are based on
haar like features and are returned as a set of values that
can either have 64(regular SURF) or 128(extended SURF)
different values. In both cases the matching is performed
by comparing the descriptors. To obtain the best correspon-
dence possible we would have to examine all the matching
possibilities, but to do so would be unreasonable given the
size of the matching possibilities space. Matching heuris-
tics like Best-Bin-First[8] and KD-trees due to Friedman([5]
have been show to provide good results with SURF descrip-
tors, for the present work we simply search for each point
in the reference frame the point whose descriptor have the

closest euclidian distance in the target frame with accept-
able results for the frame correspondence.

Algorithm1 provides the pseudo-code for the method de-
signed in this section.

A preliminary estimative for the temporal alignment can
be obtained by matching some random frames and gener-
ating a line using an robust estimator, or it can be assumed
that the search region initially contains all target sequence
frames.

Algorithm 1 Synchronization Algorithm

1: generate a primary estimative for the line i = o + 35

2: initialize searchRadius with initial value for search
Radius for corresponding frame.

3: for each frame F; € S,y do

4. expected — a + ()

5. smallestSingularValue «— oo.

6: for i «— expected — searchRadius to expected +

searchRadius do

7: detect and match interest points in frame F}; €
Srey and f; € Siq.

8: generate matrix W(Fj, f;) based on the matches.

9: decompose W using SV D.

10: singularV alue —
W'ssmallestSingularV alue.

11: if singularValue < smallestSingularValue
then

12: smallestSingularV alue «— singularV alue

13: match «— i

14: end if

15:  end for

16:  update line ¢ = o + 3 by linear regression.
17:  estimate searchRadius for the next frame.
18: end for

5. Implementation and Results

Our algorithm was implemented using the language C
using openCV library our experiments were conducted us-
ing an AMD Atlhon x2 5200+ with 2 Gigabytes of RAM,
running under windows operating system. To obtain ground
through data we used a pair of Neptune webcam’s with focal
length of 4.3 mm and maximum resolution of 2 mega pix-
els, the videos obtained videos were algorithmically syn-
chronized via computer clock to generate ground through
data. And manually unsynchronized for the testing of out
method. In all experiments the video frames had a resolu-
tion of 640 x 480 pixels and SURF was applied using a
threshold for the hessian of 250 and extended descriptors,
compare window size M of W (F, f) was fixed at 3 frames.

Figure.3 shows the result of the frame correspondence
while searching all frames in the target sequence for the
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Figure 3. temporal alignment estimation 1.

corresponding frame in total 450 reference frames were
matched against 800 target frames, the sequences had the
same frame-rate and an initial offset of 60 frames the esti-
mated alignment was j = 0.996 - 7 + 61.56 witch leads to
an error of —0.0047 + 1.56 frames, a reasonable estimation
and the running time was 127s for the point extractions and
783s for the correspondence search, in average 200 points
from each frame were detected in each frame and W (F, f)
took in consideration the 50 best matching points found.
The search range estimated by our method was also plotted
in the graph note that the correct frame always lies within
the search region.

800

700

BOO -

a00 -

400

Target Frarne

300

200+

matched frames o
expected alignment
ol [ search range upper bound |
- gearch range lower bound

o Vi

100 L L I ! L L
0 100 200 300 400 500 B00 700

Reference Frame

Figure 4. temporal alignment estimation 1.

Figure.4 shows the result of the matching for the same
data set that generated Figure.3 by searching frames inside
the estimated search region, the estimated alignment in this
case was j = 1.001 - ¢ + 60.2 witch give us an error of only
0.0017 4 0.2 frames. Also the running time for the corre-

spondence search was 71s, the parameters used by the esti-
mator were y = 0.8, =0.6,e=2and k=3
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Figure 5. temporal alignment estimation 1.

Figure.5 shows the result of the algorithm applied to an
incorrect initial search region. The search region quickly
grows in size and then converges back to a small value. the
sequences had an offset of 110 an the initial search region
estimated an maximum offset of 60 frames. the inclusion of
outliers in regression leads an estimation of the alignment
as j = 1.08:¢ + 98.3 witch give an error of 0.08; — 11.7
frames by the time the algorithm reaches the end of the se-
quences.
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Figure 6. temporal alignment estimation 1.

Figure.6 shows the result of the application of the algo-
rithm to a pair of sequences with differing frame-rates. The
frame-rate and O initial offset. the frame rate of the target se-
quence is 2 times the frame rate of the reference sequence.



the estimated offset was 7 = 0.49 - —2.3 and gives an er-
ror of —0.017 — 2.3 the loss of precision is due to the accel-
eration of the frame-rate of the target sequence decreases
the precision of the method twofold the time for the match-
ing in this data set was of 43s.

6. Conclusions

The estimator for the synchronization presented in this
paper, under the assumption that scene has low depth varia-
tion, have been demonstrated to have a good accuracy for
determining the temporal alignment, our method for dy-
namic estimation of the search range for the correspon-
dence, is shown to correctly encompass the correct match-
ing frame for the great majority of the frame search while
keeping the search range small, this approach resolves many
of the ambiguity issues related with periodic movement de-
scribed by Reid and Cardeal [12, 3] an at the same time
greatly improving execution time. A possible downside of
the method is that if we have poor initial estimation for the
initial search region, and when dealing with scenes with
a high amount of periodic movements the method can get
stuck at a local minimum, but if the movement is ran-
dom it can be expected that the absolute error will become
higher until the search region encompasses the correct tar-
get frame.

We also improve on the work of Reid in the sense that our
space feature detection is automatic and correspondence is
based on image data alone. However the assumption that
the scene can be approximated with an affine projection is
many of times impractical, as future work we aim at devel-
oping a method that applies to more general cases.
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