
A Biologically Inspired Analysis of the Incidence of the Aperture Problem in 
Natural and Urban Scenes

Lucas Pinto
Lab. of  Neurodynamics - Dept. Physiology and Biophysics - ICB/UFMG

lucasmpinto@yahoo.com.br  

Abstract

The correct signaling of motion velocity depends on 
the solution of a problem that affects biological and 
artificial motion detection systems alike: the aperture 
problem, whereby it is only possible to perceive the 
orthogonal component of the velocity of an edge seen 
through a small aperture. One of the ways to overcome 
this problem is by using two-dimensional cues, such as 
those provided by corners.  In fact,  a subset of primary 
visual cortical cells seems to use precisely this 
strategy. Thus,  the incidence of edges and corners in 
natural scenes, under which biological visual systems 
evolved,  can be a good indicator of the magnitude of 
the aperture problem in primary visual areas. In the 
present study, I sought to determine this incidence 
using the Harris edge and corner detector with kernels 
that varied in size mimicking the variation of cortical 
receptive field sizes with eccentricity.  The results 
suggest that the magnitude of the aperture problem 
may be much smaller in natural scenes when compared 
to urban scenarios,  as they contain a higher number of 
moving corners.

1. Introduction

Motion is probably the most important and powerful 
dimension of vision. Almost anything of interest in the 
visual world moves. Stimuli that share approximately 
the same velocity are seen as a unit, a figure which is 
easily parsed from background, according to the 
Gestalt factor of common fate [1]. For instance,  an 
animal that is perfectly camouflaged while still will 
appear as soon as it moves. Thus,  motion can connect 
stimuli that are widely distributed throughout the visual 
field, overriding proximity and similarity as factors of 
perceptual grouping.

The neural implementation of an unequivocal 
association between an object and its motion, however, 
is far from being a trivial task, as it depends on the 
solution of two complementary problems: integration 
of moving contours belonging to the same object and 
segregation of the motion of distinct objects [2]. These 

problems, in turn, are corollary to the so-called 
aperture problem, which arises due to the nature of 
receptive fields in the primary visual cortex [3,4].  In 
both mammals and owls, a large fraction of neurons in 
this structure presents at least some degree of motion 
direction selectivity [5,6,7,8]. Nevertheless, their 
receptive fields are typically small. Hence, individual 
local motion signals coded by these neurons are often 
inherently ambiguous, because the direction of motion 
to which a given cell responds is always orthogonal to 
the orientation of the contour [9,10], and may differ 
from the global motion direction of the object. These 
ambiguities somehow need to be overcome for the 
operations of integration and segmentation to be 
carried out properly.

A v a s t b o d y o f p s y c h o p h y s i c a l a n d 
electrophysiological evidence suggests that the 
processing of visual motion occurs in at least two 
stages [11,12]. In mammals, the first of these stages 
would take place in the primary visual cortex, the 
ambiguous local motion signals of which would be 
transmitted to another area, where a subsequent 
process of integration and/or segmentation in space and 
time would occur,  thus forming a globally coherent 
motion perception. This second level of analysis is 
believed to take place in hierarchically superior cortical 
visual areas,  such as the medial temporal area (MT) in 
primates [11,13] and the anterior ectosylvian cortex 
(AEV) in cats [14]. However, the exact neural 
mechanism of integration is still unknown. In fact, it is 
not even consensual whether such two or more 
processing stages are indeed necessary for an 
integrated perception of visual motion [15,16,17].

Indeed, the aperture problem is not universal in 
primary visual areas, since non-oriented stimulus 
features, such as corners and contour terminations, may 
be present within the receptive field of a neuron. In 
theory, such two-dimensional features of a stimulus 
can contain unambiguous information on its motion 
[18,19]. In accordance with this notion,  there is a 
subset of primary visual cortex cells that are suited for 
the use of such two-dimensional cues: the end-stopped 
cells (Hubel and Wiesel’s hypercomplex cells), which 
respond better when line terminations fall inside their 
receptive fields [6]. Pack et al. (2003) [19] 
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demonstrated that this sub-population of neurons is 
indeed capable of signaling motion regardless of 
stimulus orientation -- in other words, they solve the 
aperture problem. 

Although there are experimental demonstrations 
both of the occurrence of the aperture problem and its 
resolution by a subset of cells in the primary visual 
cortex, the proportion and relative contribution of these 
two phenomena to motion signaling within this area is 
presently unknown. Actually, not even the relative 
incidence of contours and corners/line terminators in 
moving natural scenes seen through apertures the size 
of receptive fields is known, as most studies use 
synthetic images. It is likely that these two things are 
intimately related: sensorial systems are believed to be 
adapted to the processing of information in their 
environments, by means of both phylogenetic and 
ontogenetic mechanisms [20,21]. In the specific 
instance of vision, mechanisms of neuronal 
computation would be determined by the statistical 
structure of natural scenes [20,21].  Therefore, a greater 
knowledge on the structure of visual scenes might be 
an important aid in elucidating the neuronal 
mechanisms underpinning a given perceptual process. 
The goal of the present study was, thus, to analyze the 
incidence of edges and corners in sequences of natural 
scenes seen through apertures that simulated the size 
and distribution of the receptive fields of primary 
visual cortical neurons. 

2. Methods

2.1. Film acquisition

Images were acquired at a frame rate of 25/s, with a 
resolution of 576 x 768 pixels in grayscale, with 
autofocus and manual white balance, using a Sony 
Handycam DCR-TRV-8E®, with the following 
specifications:
Type: Camcorder
Sensor: CCD 800 Kpixels
Effective resolution: 400 Kpixels
Media type: Mini-DV
Lens: Carl Zeiss, optical zoom 10x, focal distance: 3.3 
- 33 mm.

The films were captured using the software Final 
Cut Express® on an Apple MacBook® with a 2.16 GHz 
Intel Core 2 Duo Processor and 2 GB RAM, and 
converted to ‘.avi’ format using QuickTime Pro®.

Several sequences of scenes considered by the 
author as being representative of natural scenes, with 
non-controlled ambient light, and divided into two 
groups: urban environments (with man-made 
structures, e.g. buildings and cars) and natural 
environments (trees, foliage, animals etc). All 
sequences were acquired from different locations at the 
University campus. Motion in the image sequences 

could be in three configurations: motion of objects in 
the scene with static camera; self-motion (of the 
camera against a static or semi-static scene); or both. 
Whenever possible, the same scene was shot from at 
least three different distances (as measured from a 
chosen reference point), typically of 1,  2 and 4 m, to 
control for the possible effects of distance on the 
incidence of edges and corners. One or more short 
segments (length of 3 s, or 75 frames) were extracted 
from each sequence for the analysis.

2.2. Edge and corner detection

All frames from each sequence were submitted to a 
Harris corner and edge detector [22], programmed and 
executed in Matlab 7.5 (The Mathworks, Cambridge, 
MA, EUA) running on Microsoft Windows XP®. 
Briefly, the algorithm consists of:

1) Calculation of partial image derivatives along the x 
and y dimensions:

X = I ⊗ [−1 0 1] = ∂I / ∂x
Y = I ⊗ [−1 0 1]T = ∂I / ∂y

2) For a given Gaussian kernel w given by:

wu ,v = exp− (u
2 + v2 ) / 2σ 2

With σ = m/5, where m is the size of w in pixels [23], a 
covariance 2x2 matrix of the form

A C
C B

⎛
⎝⎜

⎞
⎠⎟

Is calculated, where A = X 2 ⊗w
   B = Y 2 ⊗w
   C = (XY )⊗w

The matrix eigenvalues, λ1 e λ2, are then calculated 
from the matrix trace and determinant [22]. From these 
two values, an edge, a corner or an uniform field is 
detected according to the following relations: 
λ1 ≈ λ2 ≈ 0 indicates absence of covariance, which in 
turn indicates a uniform region; 
λ1 >> λ2 ≈ 0 indicates the presence of an edge, as there 
is significant covariance only along one dimension;
λ1 > λ2 > 0 indicates the presence of a corner, by virtue 
of significant covariance along both dimensions. 

In the algorithm, the decision between edge and 
corner is made by means of a user-defined threshold τ, 
typically set at 20 intensity levels in the present study. 
Edge detection was based on the fact that the higher 
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eigenvalue represents edge intensity, while its 
associated eigenvector encodes edge direction [22,23]. 
2.2.1. Image and kernel size. Only a circular window 
of the image with 480 pixels in diameter was analyzed, 
so as to simulate the shape of human visual field. A 
ratio between number of pixels and degrees of visual 
angle was assumed so that the whole circular window 
would be equivalent to 120˚, which is the approximate 
size of the binocular field (Arditi, 1986 apud van der 
Willigen,  2000 [24]). This, each degree of visual angle 
corresponded to four pixels..

The size of the convolution kernel varied according 
to pixel position, in a way that simulated the change in 
receptive filed size observed in the primary visual 
cortex as one goes from the center to the periphery of 
the visual field. In primates, the representation of 
different regions of the visual field is not uniform: the 
central 10˚ occupy roughly half of the primary visual 
cortex surface [25,26,27]. Furthermore, receptive field 
size increase from center to periphery following a 
logarithmic relation [25,26,27].

In the present study, the specific relation between 
kernel size and eccentricity in pixels was established 
following the mathematical relation between receptive 
field (RF) size and visual field eccentricity found 
experimentally for the prosimian primate Galago by 
Rosa et al. [27]:

RF size (˚) = 0.57 x eccentricity 0.69

Minimal kernel size was set to 5 x 5 pixels, in order 
to avoid aliasing in the sampling of the Gaussian 
function [23], and size at maximal eccentricity (240 
pixels, or 60˚ of visual angle) was, according to the 
relation above, of 13 x 13 pixels.  These values 
correspond to 1.25˚ and 4.25  ̊ of visual angle, 
respectively, which is in accordance with the values 
found in the Galago [27]. Edge and corner suppression 
was not carried out, so as to allow the detection of the 
same feature by more than one convolution window, 
similarly to what happens in the primate visual system.

The algorithms used in this study are available on 
the web at http://www.verlab.dcc.ufmg.br/doku.php?
id=cursos:visao:2008-1:grupo06:index

2.3. Data and statistical analysis

For each image sequence, receptive fields (regions 
centered around a pixel,  with the size of the kernel, as 
previously explained) were classified into three 
categories that relate to the aperture problem 1) 
uniform field, if this was the output of the algorithm f 
or a given receptive field in all frames; 2) edge, if an 
edge was present in at least one frame and at most the 
total number of frames minus one (meaning that it 
moved),  and no corners were present in none of the 
frames; and 3) corner, if a corner was present in at 

least two frames and at most the total number of 
frames minus one. In addition to this,  the incidence (in 
number of frames) of edges, corner and uniform fields 
was quantified for each region (receptive field).  

All data were tested for normality using the 
Lilliefors’ normality test. Normally distributed 
variables were analyzed with Student’s t-test and/or 
Analysis of Variance (ANOVA), while their non-
parametric correspondents, namely Wilcoxon’s rank 
sum test and Kruskal-Wallis, were used in the absence 
of normal distribution. Correlations were evaluated 
with the Pearson’s correlation coefficient. Significance 
level considered in al tests was 0.05.  All the analyses 
were carried out in Matlab 7.5 (The Mathworks, 
Cambridge, MA, EUA). 

3. Results

3.1. Algorithm validation

Before being used to analyze the acquired image 
sequences,  the implemented algorithms first underwent 
a series of tests with simple synthetic image sequences.   
In all the tests, the algorithms’ outputs fitted exactly to 
the expected values based on the known image features 
and number of frames. Fig. 1 shows an example of this. 
The left-hand side image is a close-up of a frame of 
one of the synthetic sequences used, in which the white 
square moved against a black background. In this case, 
the edge and corner detector was run with edge and 
corner suppression to facilitate visualization. As the bar 
plot in Fig. 1B shows, the number of receptive fields 
classified as “corner” equals the number of corners in a 
frame (centers of red squares in 1A) multiplied by the 
number of frames (48). Running the algorithm without 
suppression yields similar results,  with a difference in 
scale, as expected (data not shown).

3.2. Image sequences

A total of 12 sequences of natural scenes and 12 of 
urban scenes were analyzed. F ig .2 shows 
representative examples of frames from a natural (Fig. 
2A) and an urban (Fig. 2C) sequence, and their 
respective algorithm outputs (without corner and edge 
suppression),  where blue pixels indicate edges and red 
pixels indicate corners. It is clear from the pictures that 
the natural setting contains both more corners (red 
pixels) and edges (blue pixels) than the more urban 
scenario. This was confirmed when all image frames 
were analyzed: as shown in Table 1, average corner 
and edge counts per movie frame were larger in natural 
scenes. Two-way ANOVA revealed differences among 
edge, corner and uniform field counts (degrees of 
freedom (df)=2, p=0) and a significant interaction 
between natural and urban scenes (df=2, p<0.0001). In 
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Figure 2. Examples of frames from a natural (A) and an urban (C) sequence and their 
corresponding edge and corner detector outputs (B and D), whithout suppression (see text for 
details). Blue pixels indicate edges and red pixels indicate corners. Circular window diameter 
is 480 pixels.

Figure 1. A) Close-up of the first frame of a test  synthetic sequence. Red squares indicate 
corners. B) Counts (y  axis, in logarithmic scale) of receptive fields classified as corners, edges 
and uniform fields for the entire sequence.



both natural and urban sequences,  average uniform 
field counts per frame were significantly larger than 
those of edges (Wilcoxon’s rank sum, p=0.0006 and 
0.0004,  respectively for natural and urban) and corners 
(two-tailed unpaired Student’s t-test,  p<0.0001 for 
both); and that edges were significantly more common 
than corners (Wilcoxon’s rank sum, p=0.0035 and 
0.0004, respectively). Natural and urban scenes 
differed significantly in the average count per frame of 
all categories, confirming that indeed individual frames 
of natural scenes are more abundant in both corners 
(Student’s t-test, p=0.00009) and edges (Wilcoxon’s 
rank sum, p=0.019), while urban scenes had, on 
average,  more uniform fields (Student’s t-test, 
p<0.00001).

3.2.1. Receptive field classification. Solely the 
incidence of corners and edges in individual frames, 
however, does not tell much about the incidence of the 
aperture problem per se,  as the problem is eminently 
one that arises with stimulus motion. The classification 
of “receptive fields” into “corner,” “edge” and 
“uniform field” with the criteria explained in the 
methods session, on the other hand, is more directly 
related to the problem, as RFs with the same feature 
over all frames (indicating lack of motion) were 
classified as uniform fields. Fig. 3 is a bar plot showing 
the average distribution among the receptive field 
categories for natural and urban image sequences. 
Two-way ANOVA revealed significant differences 
among categories for both groups (p=0,  df=2) and a 
significant interaction between the groups (p=0.0004, 
df=2), indicating that counts in each of the categories 
were not equal for urban and natural films. Individual 
comparisons with unpaired two-tailed Student’s t-test 
revealed that, for natural sequences,  the average 
number of RFs classified as “corner” (77,840 ± 9,595, 
17.6%) is significantly higher that that of “edge” RFs 
(35,077 ± 4,798, 7.9%)(p<0.0001), in contrast with the 
findings for individual frames. The number of 

“uniform” RFs (329,450 ± 10,057, 74.5%) is higher 
than both (p<0.0001 versus “corner” and “edge”). 
Among urban sequences, the opposite was observed: 
“edge” RFs (47,208 ± 6,073, 10.7%) were significantly 
more incident than “corner” RFs (28,638 ± 4,231, 
6.5%)(p=0.0199). Also in this film type, uniform fields 
predominated over the other two (366,520 ± 9,073, 
82.8%)(p<0.0001 for both). Individual comparisons 
between the two film types showed that the number of 
“corner” RFs in natural sequences is significantly 
larger than in urban scene sequences (p<0.0001), while 
no statistical difference was observed in “edge” RF 
counts (p=0.13). The average number of uniform 
fields, in turn, was higher in the urban sequences 
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Corners Edges Uniform fields

Film 
type

Absolute 
count (mean ± 

S.E.M.)

Percentage 
(mean ± 
S.E.M.)

Absolute 
count (mean ± 

S.E.M.)

Percentage  
(mean ± 
S.E.M.)

Absolute 
count (mean ± 

S.E.M.)

Percentage 
(mean ± 
S.E.M.)

Natural 18,907 ± 2,477 11.2 ± 1.6* 49,637 ± 6,997 29.4 ± 4.1*‡ 100,490 ± 9,001 59.4 ± 5.3†

Urban 5,174.1 ± 771.5 3.1 ± 0.4 24,924 ± 2,297 14.7 ± 1.4‡ 138,940 ± 2,715 82.2 ± 1.6*†

Table 1. Average corner, edge and uniform field counts per frame

Table 1. In both natural and urban films, average edge counts per frame are higher than corner 
counts (†, p<0.01), and uniform fields are more common the the latter two (‡, p<0.001). Corner and 
edge counts are higher in natural than in urban scenes (*, p<0.05), while the opposite is true for 
uniform fields (*).

Figure 3. Number of RFs classified as 
“corner”, “edge” or “uniform” for natural 
(black bars) and urban (gray  bars) sequences. 
Asterisks indicate significant differences 
between film types. See text for further details.



(p=0.012), showing that the observed differences were 
indeed probably due to a higher incidence of moving 
corners in natural sequences.

3.2.2. Influence of eccentricity. I next sought to 
investigate whether edges, corners and uniform fields 
are differently distributed with eccentricity. I first 
analyzed the correlations between counts averaged for 
all frames and pixel eccentricity. For both urban and 
natural settings,  no correlations were observed for 
either corners or uniform field counts,  nor for edge 
counts in urban sequences. In natural films, on the 
other hand, edge counts displayed a significant 
negative correlation with eccentricity (Pearson’s 
correlation coefficient (r)=-0.407, p=0.001), meaning 
that edge counts were higher in the more central 
portion of the frames (see Fig. 4). It is possible that this 
result may have been a consequence of the sampling 
technique, whereby objects of interest would have been 
preferentially sampled in the central part of the image. 
This seems unlikely, however, as the films were 
captured under a variety of scene/camera settings; as 
this distribution was not observed for any feature other 
than edges; and as this was observed only for natural 
sequences,  even though the same sampling procedures 
were adopted for both film types.

To verify whether this observation was also valid 
for receptive field classification, the visible image 
circle (see Fig. 2) was divided into two concentric 
portions: in one instance, the central circle comprised 
half of the field, while in the other it had a radius 
equivalent to 10˚ of visual angle. However, in none of 
these two configurations were the incidences of the 
three types of RF (corrected by the circle areas) 

different between the central and the peripheral circles, 
for neither urban nor natural sequences, suggesting that 
RF types are evenly distributed across different 
eccentricities (data not shown).     

4. Discussion

In the present work, I provided evidence favoring 
the notion that the aperture problem may be less severe 
in sequences of natural scenes as compared to their 
urban counterparts.  The main findings may be 
summarized as follows: 1) images of static natural 
scenes contain both more corners and edges than those 
of static urban scenes; in both types of images,  edges 
are more abundant; 2) in images of static natural scenes 
(individual frames), edges are negatively correlated 
with eccentricity, i.e., they are more abundant around 
the image center; corners are evenly distributed across 
the image; 3) the RF classification scheme proposed in 
this study categorized more RFs as “corner” than as 
“edge” in natural scene sequences, while the opposite 
was observed  in urban sequences; the number of 
“corner” RFs was significantly larger in the former 
than in the latter. 

4.1. Methodological considerations

4.1.1. Film acquisition. I see two potential weaknesses 
regarding the film acquisition procedures adopted in 
this study. First of all, the fact that all sequences were 
acquired at the University Campus made it more 
difficult to film “exclusively urban” scenes,  as there 
were trees in all the outdoor scenes. This problem is 
somewhat relieved by the fact that, in sequences shot 
with a static camera, features coming from these trees 
would be classified as “uniform” receptive fields. 
Secondly,  an n of 12 for each film type could 
potentially be somewhat insufficient. The robustness of 
the results,  however, prompts me to think otherwise: 
for instance, in all the individual natural sequences, the 
number of “corner” RFs was quite larger than “edge” 
receptive fields. All the same, it would be interesting to 
increase the number of sequences of both types, and 
acquire some of them outside campus.

4.1.2. Corner and edge detection. An alternative 
approach to the one used in this study could be the use 
of a classical Harris corner and edge detector (with fix 
kernel size) and a subsequent stage of receptive field 
classification whereby the output of the detector would 
be viewed through several apertures of varying size, 
which would classify the receptive field as “corner” 
also if an edge terminated within it. This would make 
the classification even closer to what happens in 
cortical physiology -- end-stopped cells respond best to 
edges terminating inside their receptive fields [5,6,19]. 
I intend to use this approach in a follow-up study. 
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Figure 4. Negative correlation between the 
mean number of edge counts (y  axis) and 
eccentricity (x axis) in natural scenes.



4.1.3. Receptive field classification. The adopted 
receptive field classification procedure may also suffer 
from a few drawbacks. Most importantly, it does not 
take into account whether a feature in given pixel of a 
given movie frame is the same as in another frame. In 
other words, it does not tackle the issue of feature 
correspondence. Thus being, it is possible that some 
fields were incorrectly classified as “uniform”, because 
the presence of a same type of feature (i.e. edge or 
corner) in a same pixel does not necessarily mean that 
the same feature is present, which means that the 
number of “corner” and “edge” fields may have been 
underestimated. Of course, there is no reason to believe 
that urban or natural sequences, and corners or edges, 
have been differently affected by this underestimation, 
which does not affect the main conclusion. Also 
noteworthy is the fact the presence of an edge alone 
does not imply in the occurrence of the aperture 
problem, because the global motion vector may 
coincide with the component orthogonal to edge 
orientation. It would thus be very interesting to 
approach this particular issue, perhaps using optical 
flow analysis to compare the motion direction of an 
edge and its associated corners. This is also a follow-
up I propose for this study.

4.1.4. Receptive field sizes. As a final methodological 
consideration, it is prudent to remember the fact that 
the specific relation between receptive field size and 
eccentricity used in the present study was taken from 
data from the Galago [27].  Even though they are 
qualitatively very similar to data from other primates, 
such as the macaque monkey,  they do have a few 
quantitative differences. It would be interesting to test 
whether the results of the present study would hold for 
other receptive field size distributions.

4.2. Comparison with the literature

Several studies on the statistical structure of natural 
scenes have been published over the past few years (for 
reviews, see references 20 and 21) . This 
notwithstanding, the specific issue of the structure of 
corners and edges has received considerably less 
attention. In particular, two studies approached the 
structure of edges in static scenes. One of them [28] 
studied the distribution of contour orientation in an 
image databank,  as determined by the Sobel edge 
detector, and discovered that horizontal and vertical 
edges are more common than those in oblique angles, 
suggesting that our knowingly better perceptual ability 
for vertical and horizontal edges may have an 
ontogenetic and/or phylogenetic origin. Another study 
[29] was a characterization of the probability of edge 
co-occurrence in natural static images. The authors 
showed that edges have a higher probability of being 
found together if they are co-circular, which is likely to 

reflect the smooth curves found in natural settings. 
These results also agreed with a number of 
psychophysical findings,  and effectively showed the 
physical and statistical counterpart of the “good 
continuation” principle of Gestalt. I stress that these 
two latter studies were performed with static images. 
The statistics of time-varying images had already been 
the subject of a previous study [30], which, differently 
from the present one, approached the issue exclusively 
with a frequency-domain analysis. 

To the best of my knowledge, however, this is the 
first time that the structure of corners is studied in 
natural scenes, and that edges and corners are studied 
in moving scenes. As in the above-mentioned studies, 
the present findings may have important implications 
for our understanding of the perceptual physiology of 
motion.     

4.3. Implications for the aperture problem

Since the initial works of Hubel and Wiesel [5,6], 
the so-called end-stopped cells (first termed 
hypercomplex cells) are known to exist in the 
mammalian primary visual cortex. The name of this 
subset of neurons comes from the fact they are under 
strong surround inhibition, i.e., stimuli extending 
outside their receptive fields strongly inhibits them, to 
the point that they respond best to edge discontinuities 
within their receptive fields. In other words, they 
respond to two-dimensional image features, such that, 
at least theoretically,  they are not subject to the 
aperture problem. Naturally,  this property is very 
desirable in systems that have to perform feature 
matching, or correspondence [4] -- and this is precisely 
what our visual system does, both to match disparities 
between successive moments in time and between the 
two eyes.  Earlier investigations, however, failed to 
identify the ability of any primary visual cortical 
neuron to signal the motion of two-dimensional cues 
(see, for instance, ref.  11), which was probably due to 
the nature of the stimuli used [19]. Only more recently 
has evidence favoring this function of end-stopped 
neurons emerged: when tested with the proper stimuli, 
a large fraction of these neurons responds to 2D 
stimulus motion, regardless of edge orientation [19]. 
This is where the present study fits in: moving corners 
are more abundant than moving edges in natural 
scenes, under which our visual system has evolved. 
Thus, there is a large set of 2D cues to make use of, 
suggesting that the very existence of end-stopped 
neurons is yet another piece of evidence of the 
coupling between visual cortical physiology and the 
statistics of natural images.   It is important to note that 
this conclusion is contrary to what the analysis of 
single frames, or static images, could lead to believe 
(see table 1), which highlights the importance of 
studying image sequences, besides static scenes.
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This study is therefore an important first step 
towards the understanding of which environmental 
pressures have shaped the evolution of edge and corner 
processing by biological motion detection systems, a 
knowledge that could certainly benefit the area of 
computer and machine vision as well.           
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