
1

Copyright Prentice Hall, 2001 4

Serial Communication and Data Collection

• How to collect data on the Handy Board and upload it to a host computer for

processing, using the IC environment.

• There are at least two ways upload sensor data from the Handy Board:

• Sensor data is printed to serial line in real time

Ideal for when data does not need to be sampled too quickly, since sampling rate

is limited by the serial transfer speed

or when the amount of data being collected is so great as to exceed the Handy

Board’s memory

• Sensor data is collected & stored in HB’s memory and later uploaded to serial

line

Best for capturing a short burst of rapidly changing data

or when it is desired to leave the Handy Board in a remote location for the data

collection process

Copyright Prentice Hall, 2001 5

Serial Communication and Data Collection

• IC interacts with HB via low-level protocol that allows it to do things like write

to/from HB’s memory while HB is executing IC programs

– The runtime system resident on HB responds to this protocol at all times

– Because of this, characters cannot simply be sent to the HB’s serial line

• Solution: temporarily disable runtime system’s responses to serial activity

– From the host computer side, it will appear to IC that HB is not connected,

because it will no longer respond to the built-in serial protocol

• Then, writing to the serial line is done by interacting with built-in 6811 serial port

registers

– Serial Communications Data Register (SCDR) is located at address 0x102f

• If data is stored to this register, the 6811 transmits it as serial output; when a

serial character is received, it is retrieved by reading from the same register

– Serial Communications Status Register (SCSR) is located at address 0x102e

• Bits in this register indicate when the serial port is busy (e.g., whether it is in

the middle of receiving or transmitting a character)

• IC library file: serialio.c

– Wrapper functions for interacting with serial port

Serial Line Interaction

2

Copyright Prentice Hall, 2001 6

Serial Communication and Data Collection

• Terminal emulator program: used for

receiving serially-transmitted data

• Test program for establishing a connection

between the HB and a terminal emulator on

the host computer

• Load serxmit.c serialio.c

• disable_pcode serial(): so that HB

does not interpret any accidental characters

that might be sent from the host computer

• Infinite loop:

– Prints a message to the LCD screen telling the

user to press the Start button

– Calls the library function start_press(),

which waits for the Start button to be pressed

– Transmits the 96 printable characters of the

ASCII 1 character set, beginning with code 32,

a space, and ending with code 127, a tilde

• To restart HB in normal mode: hold down

Start button while turning it on

Connecting to a Terminal Program

/* serxmit.c

Each time start button is

pressed, transmits the 96-

character ASCII set */

void main()

{

int i;

disable_pcode_serial();

while (1) {

printf("Press Start

button to begin\n");

start_press();

printf("Transmitting...\n");

for (i= 32; i< 128;

i++)

serial_putchar(i);

}

}

Copyright Prentice Hall, 2001 7

Serial Communication and Data Collection

• IC library file printdec.c provides printdec(),

which takes an integer as input and prints its value as a

decimal number over the serial line

• Example: analogpr.c program to continuously print

value of analog sensor 0 to serial line

– After calling printdec() to print the sensor

value, the program outputs the values 10 and 13 to

the serial line

– This is done using serial putchar() so that

the data is sent as control characters. When

interpreted by the terminal emulator, the 10 causes

a line feed and the 13 causes a carriage return.

– msleep() function in the inner loop of the

display routine slows down the rate at which the

HB broadcasts the sensor data to allow terminal

emulator program to keep up on its screen display.

– Sensor data is continuously displayed on the host

computer screen

Printing to Serial Line

/* analogpr.c

requires printdec.c,

serialio.c */

void main()

{

disable_pcode_serial();

while (1) {

printdec(analog(0));

serial_putchar(10);

serial_putchar(13);

/* wait 0.1 sec between

each print */

msleep(100L);

}

}

3

Copyright Prentice Hall, 2001 8

Serial Communication and Data Collection

Capturing Data

• For quickly changing data, the final piece

of the puzzle is storing sensor data in the

HB’s memory for later printing to the serial

line

• This allows a much faster capture rate

since the speed is limited only by the speed

of IC, rather than the relatively slow serial

communications rate

• datacoll.c: IC program for capturing data

– data[] array of 1000 elements

– main() allows user to trigger

data-collection and data-dump modes

by pressing the Start button

/* datacoll.c

requires printdec.c,

serialio.c */

int SAMPLES=1000;

char data[1000];

void main()

{

disable_pcode_serial();

printf("press Start to

collect data\n");

start_press();

collect_data();

beep();

printf("press Start to

dump data\n");

start_press();

dump_data();

beep();

printf("done.\n");

}

Copyright Prentice Hall, 2001 9

Serial Communication and Data Collection

Capturing Data

void collect_data()

{

int i;

for (i= 0; i< SAMPLES;

i++) {

data[i]= analog(0);

/* to slow down capture rate,

add msleep here */

}

}

void dump_data()

{

int i;

for (i= 0; i< SAMPLES;

i++) {

printdec(data[i]);

serial_putchar(10); /*

line feed */

serial_putchar(13); /*

carriage return */

}

}

• collect_data() iterates through

the elements of the array, storing a

successive data sample in each one

(takes 2 sec - 500 samples/sec - may

slow down)

• dump_data() outputs the data

stored in the array to the serial line,

using the line-feed/ carriage-return

technique

• Save data; load into spreadsheet

program for graphing and analysis

