

Introdução à Robótica Handy Board & Interactive C

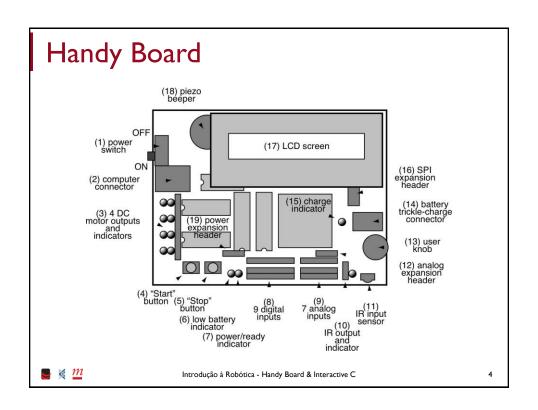
Prof. Douglas G. Macharet douglas.macharet@dcc.ufmg.br

DEPARTAMENTO DE CIÊNCIA DA

Handy Board & Interactive C

Leiam os manuais! Sejam cuidadosos!

Introdução à Robótica - Handy Board & Interactive C


Handy Board

Especificações

- Microprocessador Motorola 68HC11 (8 bits)
- Clock de 2 MHz
- 32 Kb de RAM
- Saídas
 - 4 motores DC (9v, IA)
- Entradas
 - 7 sensores analógicos
 - 9 sensores digitais
- 2 botões programáveis (start, stop), knob, beeper

 \blacksquare \bowtie m

Introdução à Robótica - Handy Board & Interactive C

Especificações

- Compilador de linguagem C
 - Randy Sargent
 - Desenvolvido para aplicações robóticas
 - Compilada em um pseudo-código (não nativo)
- Interatividade
 - Linha de comando
 - Digitar expressões e chamadas de funções

 \blacksquare \bowtie m

Introdução à Robótica - Handy Board & Interactive C

5

Interactive C

Especificações

- Estabilidade
 - Lança exceção ao invés de dar crash no sistema
- Multi-tarefa
 - Até 12 processos (funções) simultaneamente

📮 🤘 <u>17</u>

Introdução à Robótica - Handy Board & Interactive C

Tipos de dados

- Case sensitive
- Tipos suportados
 - int, 16-bits (-32768 a +32767)
 - **long**, 32-bits (-2147483648 a +2147483647)
 - float, 32-bits (10⁻³⁸ a 10³⁸)
 - char, 8-bits

Introdução à Robótica - Handy Board & Interactive C

7

Interactive C

Tipos de dados

- Variáveis Locais
 - Declaradas no contexto de uma função
 - Inicializadas quando a função é executada
- Variáveis Globais
 - Declaradas fora de uma função específica
 - Inicialização
 - Um novo arquivo é copiado para a HB
 - A função main() é executada
 - Ocorre um reset no hardware

!

Introdução à Robótica - Handy Board & Interactive C

Tipos de dados

- Variáveis Globais Persistentes
 - Não inicializadas (valor inicial arbitrário)
 - Mantém o estado quando
 - A HB é desligada/ligada
 - A função main() é executada
 - Ocorre um reset no hardware

Introdução à Robótica - Handy Board & Interactive C

9

Interactive C

Tipos de dados

- Variáveis Globais Persistentes
 - Devem ser declaradas primeiramente
 - Principais exemplos de uso
 - Calibração e configuração
 - Aprendizado

Introdução à Robótica - Handy Board & Interactive C

Tipos de dados

 \blacksquare \bowtie m

Introdução à Robótica - Handy Board & Interactive C

П

Interactive C

Função main()

- Automaticamente executada ao ligar a HB
- Ligando sem executar a função main()
 - Manter pressionado o botão start ao ligar a HB

!

Introdução à Robótica - Handy Board & Interactive C

Controle de fluxo

- If-Else
- While
- For
- Break
 - Sai de um while ou for
- NÃO suporta os comandos case e switch

■ 🙀 <u>m</u>

Introdução à Robótica - Handy Board & Interactive C

13

Interactive C

Vetores

```
int retrieve_element(int index, int array[])
{
    return array[index];
}

void main ()
{
    int foo[10];
    int array[] = {0, 4, 5, -8, 17, 301};
    char string[] = "Hello there";
    retrieve_element(3, array);
}
```

Introdução à Robótica - Handy Board & Interactive C

Ponteiros

```
void avg_sensor(int port, int result)
{
   int sum = 0;
   int i;
   for (i = 0, i < 10, i ++)
       sum += analog(port);

   *result = sum/10;
}

void main()
{
   int result;
   avg_sensor(0, &result);
}</pre>
```

* Aritmética de ponteiros não é suportada!

■ 🙀 <u>m</u>

Introdução à Robótica - Handy Board & Interactive C

15

Interactive C

Motores

- Utiliza Pulse Width Modulation (PWM)
- Funções
 - fd(int m):Aciona o motor m (p=100)
 - bk(int m):Aciona o motor m na direção oposta (p=-100)
 - motor(int m, int p): Aciona o motor m com potência p
 - off(int m): Desliga o motor m
 - alloff() ou ao(): Desliga todos os motores simultaneamente
- Valores válidos
 - Motor: {0, 1, 2, 3}
 - Potência: [-100, ..., 100]

 \blacksquare \bowtie m

Introdução à Robótica - Handy Board & Interactive C

Motores

```
void main()
{
   fd(0);
   fd(1);
   motor(2, 50);
   sleep(1.0);
   off(2);
   sleep(1.0);
   ao();
}
```

 \blacksquare \bowtie m

Introdução à Robótica - Handy Board & Interactive C

17

Interactive C

Sensores

- Analógicos
 - Retorna um valor no intervalo [0, ..., 255]
 - int analog(int p): Valor do sensor conectado à porta p
 - Portas 0-6
- Digitais
 - Retorna um valor 0/1
 - int digital(int p): Valor do sensor conectado à porta p
 - Portas de 7-15

■ 🙀 <u>m</u>

Introdução à Robótica - Handy Board & Interactive C

Multi-tarefa

- Todo processo inicializado
 - Executa por um determinado número de ticks
 - Possui sua própria pilha de execução
- Funções
 - int start_process(function(...), [ticks], [stack-size])
 - Valor padrão de ticks é 5 milisegundos
 - Valor padrão de stack é 256 bytes
 - int kill process(int pid)
 - kill_all()
- Processos se comunicam através de variáveis globais

Introdução à Robótica - Handy Board & Interactive C

19

Interactive C

Multi-tarefa

```
void check_sensor(int n)
{
    while(1)
        printf("Sensor %d is %d\n", n, digital(n));
}

void main()
{
    int pid;
    pid=start_process(check_sensor(2));
    sleep(1.0);
    kill_process(pid);
}
```

Introdução à Robótica - Handy Board & Interactive C

Escrita de mensagens no LCD

Utilizar o comando printf()

```
printf(format-string, [arg-1] , ... , [arg-N] )
```

Caracteres de formatação de mensagens

```
%d Type: int Description: decimal number
%x Type: int Description: hexadecimal number
%b Type: int Description: low byte as binary number
%c Type: int Description: low byte as ASCII character
%f Type: float Description: floating point number
%s Type: char array Description: char array (string)
```

■ ≰ <u>m</u>

Introdução à Robótica - Handy Board & Interactive C

21

Interactive C

Macros

```
#define RIGHT_MOTOR 0
#define LEFT_MOTOR 1

#define GO_RIGHT(power) (motor(RIGHT_MOTOR, (power)))
#define GO_LEFT(power) (motor(LEFT_MOTOR, (power)))

#define GO(left, right) {GO_LEFT(left); GO_RIGHT(right)}

void main()
{
    GO(25, 25);
}
```

Introdução à Robótica - Handy Board & Interactive C

Compilação condicional

```
#define DEBUG

void main()
{
    #ifdef DEBUG
    printf("Mensagem de Debug!");
    #endif
}
```

 \blacksquare \bowtie m

Introdução à Robótica - Handy Board & Interactive C

23

Interactive C

Demais funções disponíveis

- Botões
 - int stop_button(): Retorna o valor do botão stop (0/1)
 - int start_button(): Retorna o valor do botão start (0/1)
 - stop_press(): Espera o botão stop ser pressionado e liberado
 - start_press(): Espera o botão start ser pressionado e liberado
 - int knob(): Retorna o valor da posição do knob ([0, ..., 255])

```
while (!stop_button( ));
while(stop_button( ));
beep ( );
```

 \blacksquare \bowtie m

Introdução à Robótica - Handy Board & Interactive C

Demais funções disponíveis

- Tempo
 - sleep(float s): Espera por s segundos
 - msleep(long ms): Espera por ms milisegundos
- Tom
 - **beep()**: Produz um tom de 500 Hz por 0,3 segundos
 - tone(float f, float t): Tom de f Hz por t segundos

Introdução à Robótica - Handy Board & Interactive C

25

Interactive C

Arquivos

- Um programa pode ser definido em vários arquivos
- Carregar os arquivos com o comando de console load
 - É possível informar mais de um arquivo como parâmetro
- Definir um arquivo .lis relacionando todos os arquivos

Introdução à Robótica - Handy Board & Interactive C