

Introdução à Robótica Controle (1/2)

Prof. Douglas G. Macharet douglas.macharet@dcc.ufmg.br

DEPARTAMENTO DE CIÊNCIA DA

Introdução

- Controle de robôs móveis
 - Assunto para um semestre inteiro
- Teoria de controle
 - Assunto para vários semestres
 - Engenharia de Controle e Automação
- Serão abordados os principais tópicos

 \blacksquare \bowtie m

Introdução à Robótica - Controle (1/2)

Introdução

- Tarefas definidas por metas (goals)
 - Conceito de completude
 - Ir até uma determinada posição
 - Conceito de manutenção
 - Mover-se a 0,5 m/s

 \blacksquare \bowtie m

Introdução à Robótica - Controle (1/2)

3

Introdução

Controle

- Geralmente para tarefas de baixo-nível
 - Principalmente em metas de manutenção
- Noções gerais

output = Controller(input)

- Output: sinal de controle (tensão do motor)
- Input: estado desejado / erro (velocidade)

Introdução à Robótica - Controle (1/2)

Introdução

Controle

- Baixo nível
 - Qual tensão deve ser aplicada ao motor de forma a obter uma velocidade angular ω ?
- Alto nível
 - Controle cinemático
 - Qual o conjunto de entradas (velocidades) que levam o robô de uma posição inicial a uma final?

 \blacksquare \bowtie m

Introdução à Robótica - Controle (1/2)

5

Controle

Conceitos básicos

Considere um sistema dinâmico dado por

$$\dot{\mathbf{x}} = f(\mathbf{x}, u)$$
$$\mathbf{y} = h(\mathbf{x}, u)$$

- x: representa o <u>estado</u> do sistema
- *u*: representa as <u>entradas</u> do sistema
- y: representa as saídas do sistema

Introdução à Robótica - Controle (1/2)

Conceitos básicos

Sistema dinâmico

$$\dot{\mathbf{x}} = f(\mathbf{x}, u) \leftarrow$$
 Sistema $y = h(\mathbf{x}, u) \leftarrow$ Observação

- Formas gerais de controle
 - Malha aberta
 - Malha fechada

Introdução à Robótica - Controle (1/2)

7

Controle

Malha aberta

- Open-loop, Feedforward
- O resultado das ações de controle <u>não é</u> considerado (realimentado) no sistema

Não se adapta a mudanças no sistema

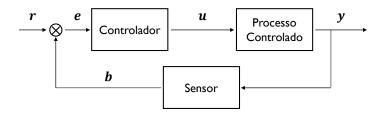
!

Introdução à Robótica - Controle (1/2)

Malha aberta

- Movimentar o robô um metro para frente
 - Aplicar uma velocidade de 0,25 m/s durante 4s
- E a incertezas relacionadas?
 - Atuadores
 - Ambiente

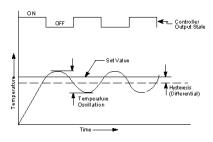
 \blacksquare \bowtie m


Introdução à Robótica - Controle (1/2)

9

Controle

Malha fechada


- Closed-loop, Feedback
- O resultado das ações de controle é considerado (realimentado) no sistema

Introdução à Robótica - Controle (1/2)

Malha fechada - On/Off

- Sistemas simples e eficazes
 - Liga/Desliga de acordo com a medição
 - Mudanças bruscas/Oscilações

 \blacksquare \bowtie m

Introdução à Robótica - Controle (1/2)

ı

Controle

Malha fechada – Cálculo do erro

- Objetivo é a minimização do erro
 - Possível apenas com a utilização de sensores
 - Diferença entre o valor atual e o valor desejado
 - Valor atual → Valor medido pelo sensor
 - e = r b
 - Tipos de informação
 - Zero/Não-zero, Magnitude, Direção, ...

Introdução à Robótica - Controle (1/2)

Malha fechada – Tipos clássicos de controle

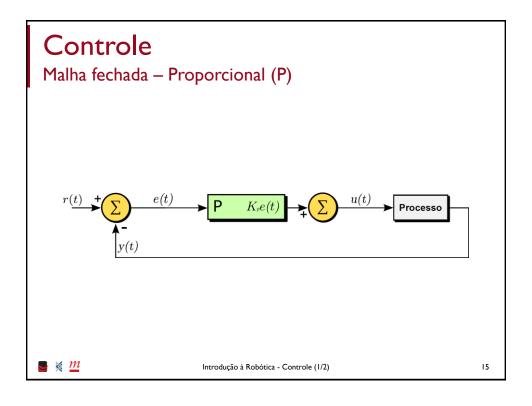
- Proporcional (P)
- Proporcional-Derivativo (PD)
- Proporcional-Integral (PI)
- Proporcional-Integral-Derivativo (PID)

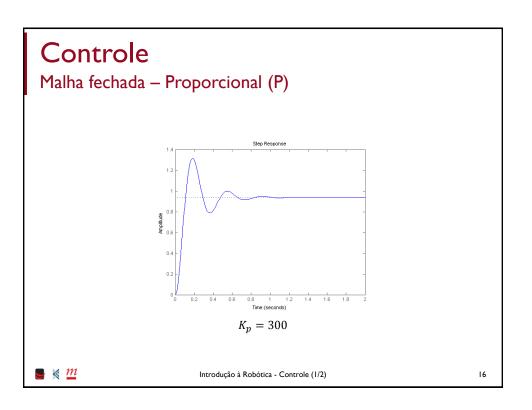
 \blacksquare $\not \in$ \underline{m}

Introdução à Robótica - Controle (1/2)

13

Controle


Malha fechada - Proporcional (P)


- Atua de forma proporcional ao erro
 - Quanto maior a distância para o estado alvo, mais forte será a resposta do controlador
- A entrada de controle é dada por

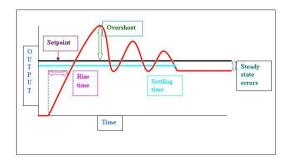
$$u = K_p \cdot e$$

- K_p é o ganho proporcional
- O ganho possui grande impacto no desempenho

Introdução à Robótica - Controle (1/2)

Malha fechada - Proporcional (P)

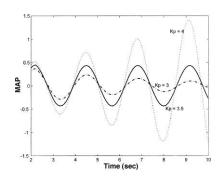
- Maneiras de determinar o ganho
 - Analítica: Exige um grande entendimento do sistema e caracterização matemática
 - Empírica: Demanda que o sistema passe por uma extensiva bateria de experimentos
 - Automática: Ajustado durante a própria execução do sistema


Introdução à Robótica - Controle (1/2)

17

Controle

Malha fechada – Proporcional (P)


- Principais problemas
 - Ganho baixo: Steady State Error

Introdução à Robótica - Controle (1/2)

Malha fechada - Proporcional (P)

- Principais problemas
 - Ganho alto: Oscilações

 \blacksquare \bowtie m

Introdução à Robótica - Controle (1/2)

19

Controle

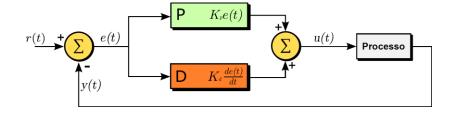
Malha fechada – Proporcional (P)

- Como resolver esses problemas?
 - Pode não ser possível controlar a oscilação apenas variando-se o ganho proporcional
 - Adicionar um novo termo, responsável por "dissipar a energia", fazendo o sistema convergir
- Amortecimento (damping)
 - Proporcional à derivada do erro

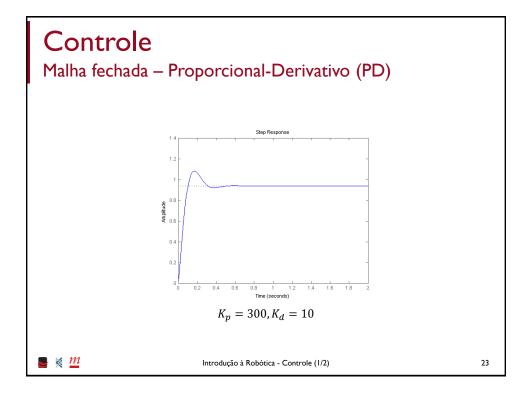
Introdução à Robótica - Controle (1/2)

Malha fechada – Proporcional-Derivativo (PD)

- Possui um termo proporcional e um termo derivativo que irá prover o amortecimento
- A entrada de controle é dada por $u = K_p \cdot e + K_d \cdot de / dt$
 - K_d é o ganho derivativo
- Os ganhos devem ser escolhidos juntos


 \blacksquare \bowtie m

Introdução à Robótica - Controle (1/2)


21

Controle

Malha fechada – Proporcional-Derivativo (PD)

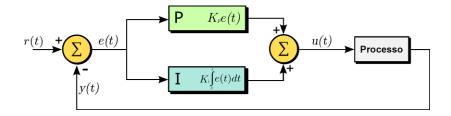
Introdução à Robótica - Controle (1/2)

Malha fechada – Proporcional-Derivativo (PD)

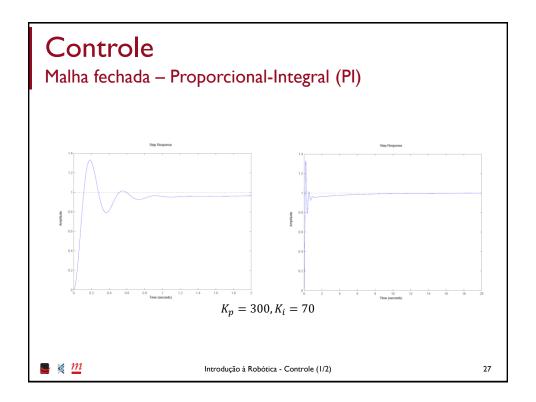
- E o Steady State Error?
 - O erro acumulado persiste
- Solução
 - Somar os erros e então compensá-los quando esses se tornarem significativamente grande
 - Integral do erro

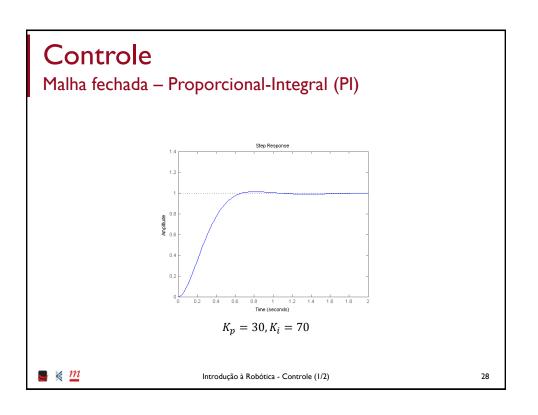
Introdução à Robótica - Controle (1/2)

Malha fechada - Proporcional-Integral (PI)


- Possui um termo proporcional e um termo integral que reduz o erro acumulado
- A entrada de controle é dada por $u = K_p \cdot e + K_i \cdot \int e \ dt$
 - K_i é o ganho integral
- Os ganhos devem ser escolhidos juntos

Introdução à Robótica - Controle (1/2)

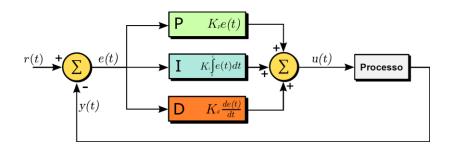

25


Controle

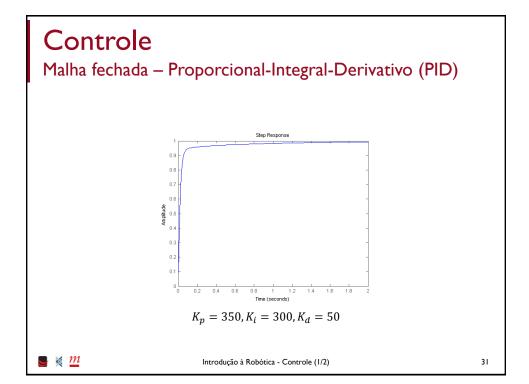
Malha fechada – Proporcional-Integral (PI)

Introdução à Robótica - Controle (1/2)

Malha fechada - Proporcional-Integral-Derivativo (PID)


- Combinação dos três termos
- A entrada de controle é dada por $u = K_p \cdot e + K_i \cdot \int e \ dt + K_d \cdot de / dt$
- Os ganhos devem ser escolhidos juntos
 - Tarefa bem mais complicada!

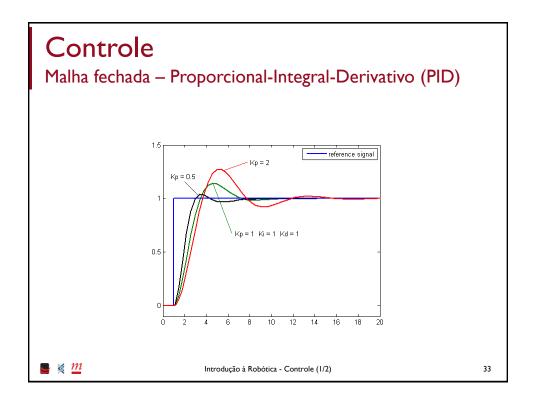
Introdução à Robótica - Controle (1/2)

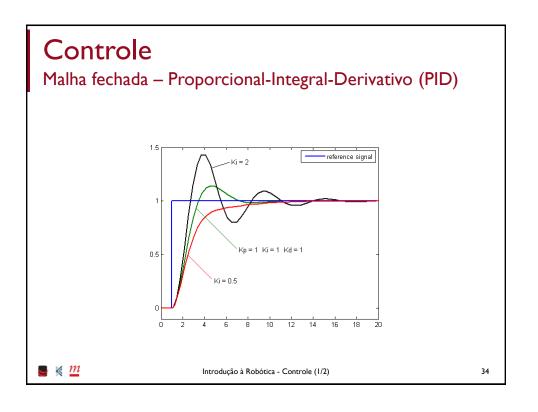

29

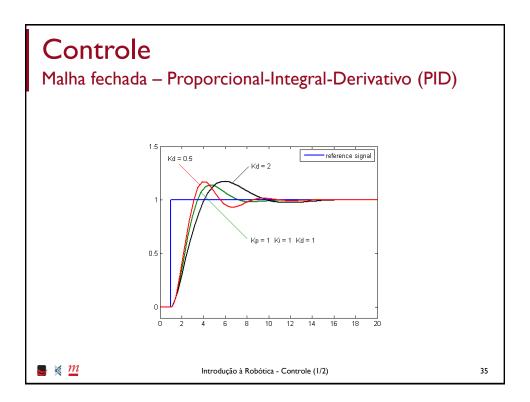
Controle

Malha fechada – Proporcional-Integral-Derivativo (PID)

Introdução à Robótica - Controle (1/2)




Malha fechada – Proporcional-Integral-Derivativo (PID)


Parâmetro	Rise Time	Overshoot	S ettling T ime	Steady State
K_p	Diminui	Aumenta	Imperceptível	Diminui
K_i	Diminui	Aumenta	Aumenta	Elimina
K_d	Imperceptível	Diminui	Diminui	Nenhuma

!

Introdução à Robótica - Controle (1/2)

