

Introdução

- Aquisição de informações do ambiente
 - Mais conhecimento → Melhores decisões
- Diferentes tipos de sensores
 - Qual tarefa o robô deve resolver?
 - Quanto posso pagar?
 - Qualidade
 - Outras características (Peso, tamanho, ...)

■ 🙀 <u>m</u>

Introdução à Robótica - Sensores

Introdução

Classificação

- Proprioceptivos (internos)
 - Mede valores internos aos sistema (robô)
 - Ex: Velocidade do motor, orientação, bateria, ...
- Exteroceptivos (externos)
 - Mede valores externos ao sistema (ambiente)
 - Ex: Distância de objetos, intensidade da luz, ...

 \blacksquare \bowtie m

Introdução à Robótica - Sensores

5

Introdução

Classificação

- Passivos
 - Baseados em energia vinda do ambiente
 - Ex: Câmeras, bússolas, bumpers, ...
- Ativos
 - Emitem a própria energia e medem o resultado
 - Melhor desempenho, influenciam no ambiente
 - Ex: Lasers, radares, ...

 \blacksquare \bowtie m

Introdução à Robótica - Sensores

Processamento Digital de Sinais

- Maioria dos fenômenos é contínuo
 - Geram sinais (medições) contínuos
- Para utilizá-lo é necessário uma conversão
 - Analógico → Digital
- Principais características
 - Amostragem
 - Quantização

 \blacksquare \bowtie m

Introdução à Robótica - Sensores

7

Processamento Digital de Sinais

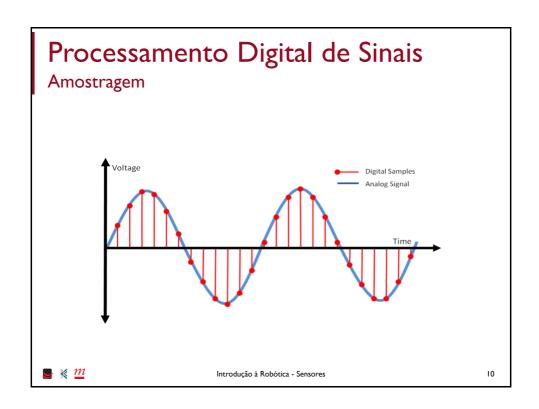
- Conversão implica em perda de informação
 - Qual informação pode ser descartada?

- Amostragem: Intervalo entre os valores
- Quantização: Transformação do valor

 \blacksquare \bowtie m

Introdução à Robótica - Sensores

•


Processamento Digital de Sinais

Amostragem

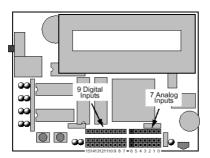
- Processo no qual são armazenados alguns valores de um sinal contínuo em instantes discretos de tempo
 - Período de amostragem
- Similar ao que ocorre em um vídeo
 - Fotos das cenas em intervalos regulares
 - Sensação de movimento

 \blacksquare \bowtie m

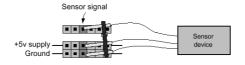
Introdução à Robótica - Sensores

Processamento Digital de Sinais Quantização

- Valores da função também são contínuos
 - Apesar de amostrados de forma discreta
- Discretização do sinal na amplitude
 - Arredondamento → Perda de informação
- Processo realizado por um quantizador
 - Software/Hardware


Introdução à Robótica - Sensores

- 11


Processamento Digital de Sinais Quantização 4 bit quantization 4 bit quantization 4 bit quantization 4 bit quantization 5 dit quantization 6 dit quantization 7 distribution 8 dit quantization 9 distribution 10 distribution 11 distribution 12 lintrodução à Robótica - Sensores

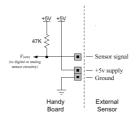
Interface de Sensoriamento

Handyboard

- Entradas analógicas
 - Portas 0 6
- Entradas digitais
 - Portas 7 15

- Cada porta fornece 3 sinais
 - Sinal
 - Tensão de +5V
 - Terra
- OBS: Não é todo sensor que demanda +5V!

 \blacksquare \bowtie m


Introdução à Robótica - Sensores

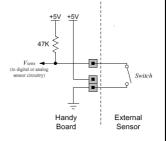
13

Interface de Sensoriamento

Handyboard – Circuito de entrada

- Linha de sinal em +5V
 - Utiliza um resistor de 47ΚΩ
 - Valor padrão sem sensores conectados
- Metade do divisor de tensão (com o sensor)

 \blacksquare \bowtie m


Introdução à Robótica - Sensores

Interface de Sensoriamento

Handyboard – Entradas digitais

- Interpreta a tensão de cada sensor (V_{Sens})
 - $V_{sens} > 2.5V \rightarrow Valor lógico 1 (true)$
 - $V_{sens} < 2.5V \rightarrow Valor lógico 0 (false)$
- Exemplo de um switch
 - Conexão entre LS e GND

switch state	V _{mma} voltage	hardware reading	digital() result
open - not pressed	5 volts	1	0 – false
closed - pressed	0 volts	0	1 – true

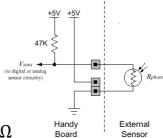
Introdução à Robótica - Sensores

15

Interface de Sensoriamento

Handyboard – Entradas digitais

- Exemplo de um switch
 - Solto: Circuito aberto, não existe conexão entre LS e GND. Valor padrão de +5V ou lógico 1 (T).
 - Pressionado: Conexão do LS com o GND (0V). É feita uma leitura do valor lógico 0 (F).
- A leitura é invertida via software
 - digital()


 $\blacksquare \not \in \underline{m}$

Introdução à Robótica - Sensores

Interface de Sensoriamento

Handyboard – Entradas analógicas

- Medem valores de variação contínua
 - O valor de V_{Sens} (0V-5V) é convertido (A/D) para um número de 8 bits (0-255)
- Exemplo de um LDR
 - Fotoresistor
 - Conexão entre LS e GND
 - Resistência variável
 - Balanceada com a fixa de 47ΚΩ

 \blacksquare \bowtie m

Introdução à Robótica - Sensores

17

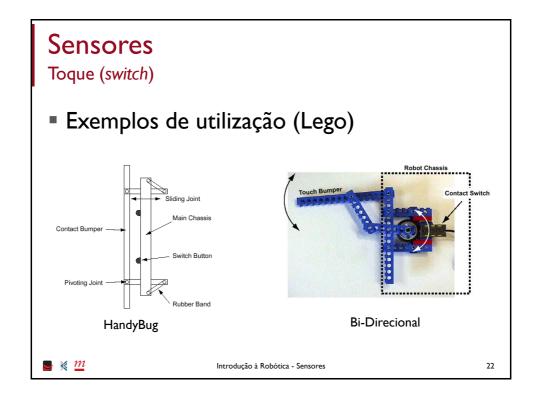
Interface de Sensoriamento

Handyboard – Entradas analógicas

- Divisor de tensão (proporcional à razão)
 - R = 47KΩ, V_{sens} = 2.5V
 - R \ll 47KΩ, $V_{sens} \cong GND$
 - R \gg 47KΩ, $V_{sens} \cong +5V$

 \blacksquare \bowtie m

Introdução à Robótica - Sensores


Toque (switch)

- Indicam se ocorreu um contato físico
 - Ex: O bumper pode ser utilizado para alterar a direção de movimento após uma colisão
- Sensoriamento limitado
 - Maior quantidade → Mais informações
 - É melhor prevenir do que remediar!
- Pode ser utilizado como odometria

Introdução à Robótica - Sensores

Sensores Toque (switch) Exemplos de conexão

Sensores Toque (switch) Exemplos de utilização (Lego) Robot Chassis Introdução à Robótica - Sensores

LDR (Light-Dependent Resistor)

- Mede a intensidade da luz no ambiente
 - Valores pequenos com muita luz
 - Resistência pequena $(V_{sens} \cong 0V)$
 - Valores grandes com pouca luz
 - Resistência grande ($V_{sens} \cong +5V$)

Introdução à Robótica - Sensores

23

Sensores

LDR (Light-Dependent Resistor)

- Utilizando o sensor
 - Proteção permite uma detecção direcionada


```
while (1) {
    printf("%d\n", analog(0));
    msleep(100L);
}
```

```
int light(int port) {
   return 255 - analog(port);
}
```

Introdução à Robótica - Sensores

LDR (Light-Dependent Resistor)

- LDR Diferencial
 - Permite fazer uma interpretação de qual lado está recebendo mais luz, e de quanto mais

$$V_{
m out} = rac{5R_1}{R_1 + R_2}$$
 $V_{
m out}$
 $V_{
m$

Introdução à Robótica - Sensores

25

Sensores

LDR (Light-Dependent Resistor)

- LDR Diferencial
 - $R_2 = R_1$, $V_{out} = 2.5V$
 - $R_2 \ll R_1$, $V_{\text{out}} \cong +5V$
 - Mais luz em R₂
 - $R_2 \gg R_1$, $V_{out} \cong gnd$
- Considerações
 - Utilizar LDRs com $R \cong 10 \mathrm{K}\Omega$
 - Barreira: Projetar sombra na direção contrária

 \blacksquare \bowtie m

Introdução à Robótica - Sensores

24

Photocell Elements

Optically Shielding "Nose"

LDR (Light-Dependent Resistor)

```
int LEFT_MOTOR= 0;
int RIGHT_MOTOR= 3;
int DIFF_EYE= 0;

void main()
{
    while (1) {
        if (analog(DIFF_EYE) < 128) {
            /* turn to left */
            motor(RIGHT_MOTOR, 100); sleep(0.1); off(RIGHT_MOTOR);
        } else {
            /* turn to right */
            motor(LEFT_MOTOR, 100); sleep(0.1); off(LEFT_MOTOR);
        }
    }
}</pre>
```

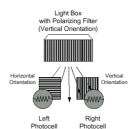
Introdução à Robótica - Sensores

Sensores

 \blacksquare \bowtie m

LDR (Light-Dependent Resistor)

- Luz polarizada
 - Possui apenas uma "direção de movimento"
 - Geralmente é obtida utilizando-se um filtro


₽ ≰ <u>m</u>

Introdução à Robótica - Sensores

14

LDR (Light-Dependent Resistor)

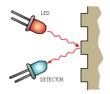
- LDR Diferencial Polarizado
 - Pode ser utilizado para localização
- Considerando fontes polarizadas
 - Valores acima do valor médio representam uma fonte, abaixo representam outra fonte

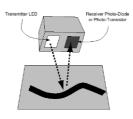
Introdução à Robótica - Sensores

29

Sensores

Óptico-Reflexivo


- Sensor ativo
- Feixe de luz emitido pelo sensor é refletido no ambiente e captado por um receptor
- De acordo com a reflectância da superfície, mais ou menos luz é refletida de volta
- Essa quantidade de luz é medida e informada


 \blacksquare \bowtie m

Introdução à Robótica - Sensores

Óptico-Reflexivo

- Emissor
 - LED infravermelho
- Receptor
 - Fotodiodo
 - Fototransistor

Introdução à Robótica - Sensores

31

Sensores

Óptico-Reflexivo

- Circuitos separados
 - Emissor/Receptor
- Emissor
 - Conectado a +5V
 - Resistor entre $220\Omega 470\Omega$
- Receptor
 - Conectado ao LS e GND, como um LDR

■ ≰ <u>m</u>

Introdução à Robótica - Sensores

Óptico-Reflexivo

- Principais aplicações
 - Detecção de objetos
 - Ex: Distância para uma parede
 - Detecção de características
 - Ex: Uma parte que difere do restante da superfície

∍ 🤘 <u>m</u>

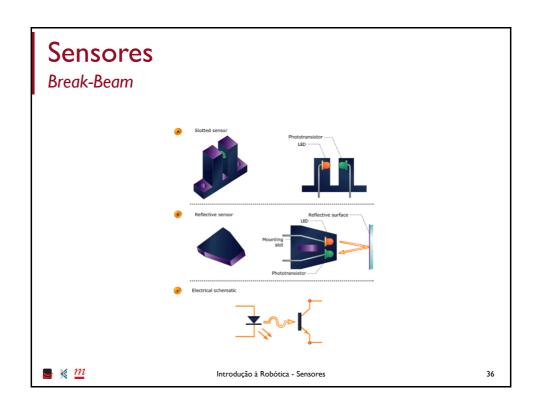
Introdução à Robótica - Sensores

33

Sensores

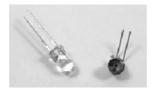
Óptico-Reflexivo vs. LDR

- LDR
 - Fáceis de trabalhar (resistor)
 - Tempo de resposta mais lento
- Óptico-Reflexivo
 - Mais sensível a pequenas variações
 - Tempo de resposta mais rápido


 \blacksquare \bowtie m

Introdução à Robótica - Sensores

Sensores Break-Beam Sensor ativo Emissor/Receptor direcionados um ao outro Detecta se o feixe de luz foi interrompido


Introdução à Robótica - Sensores

■ 🤘 <u>m</u>

Break-Beam

- Não necessariamente um sensor fechado
 - Qualquer par de Emissor/Receptor
 - Ex: LED e Fotodiodo/Fototransistor


Introdução à Robótica - Sensores

37

Sensores

Break-Beam

- Shaft-Encoding
 - Medir a variação (rotação) do eixo da roda
- Velocidade
 - Quão rápido as rodas estão girando
- Odômetro
 - Número total de rotações

 \blacksquare \bowtie m

Introdução à Robótica - Sensores