

Introdução à Robótica Robótica Móvel – Locomoção

Prof. Douglas G. Macharet douglas.macharet@dcc.ufmg.br

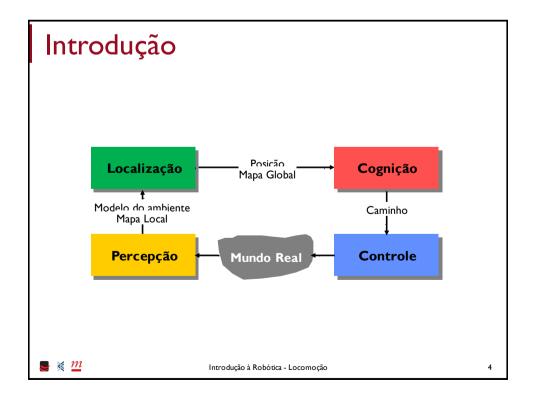
*Apresentação baseada nos slides de Introduction to Autonomous Mobile Robots.

DEPARTAMENTO DE CIÊNCIA DA

Introdução

- Um robô móvel necessita de mecanismos que o permitam navegar pelo ambiente
- Projetados de acordo com o ambiente
 - Aéreo
 - Terrestre
 - Aquático
 - Espacial

 \blacksquare \bowtie m


Introdução à Robótica - Locomoção

Introdução

- Navegação
 - Tarefa de mais alto nível
 - Planejamento (Decisões)
- Necessário <u>perceber</u> e <u>entender</u> o mundo
 - Sensores
- Diferentes etapas (subtarefas) envolvidas

■ 🤘 <u>m</u>

Introdução à Robótica - Locomoção

Introdução

- Na disciplina veremos um nível mais baixo
 - Sensores simples
 - Métodos básicos de controle
 - Mecanismos de locomoção

 $\mathbf{P} \not \mathbf{M}$

Introdução à Robótica - Locomoção

5

Locomoção

- Diferentes formas de se movimentar
 - Aspecto importante ao se projetar o robô
- Exemplos
 - Andar, Correr, Pular, Voar, ...
- Inspiração principalmente na natureza

■ 🙀 <u>m</u>

Introdução à Robótica - Locomoção

Locomoção Natureza

Type of motion		Resistance to motion	Basic kinematics of motion
Flow in a Channel		Hydrodynamic forces	Eddies
Crawl		Friction forces	-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Sliding	all o	Friction forces	Transverse vibration
Running	3	Loss of kinetic energy	Periodic bouncing on a spring
Walking		Loss of kinetic energy	Rolling of a polygon (see figure 2.2)

Introdução à Robótica - Locomoção

Locomoção

Natureza

■ 🤘 <u>m</u>

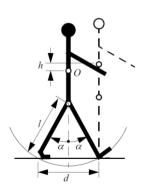
- Conceitos da natureza são difíceis de imitar
- Quais os principais mecanismos utilizados?
 - Rodas e Esteiras
 - Por quê?

 \blacksquare \bowtie m

Introdução à Robótica - Locomoção

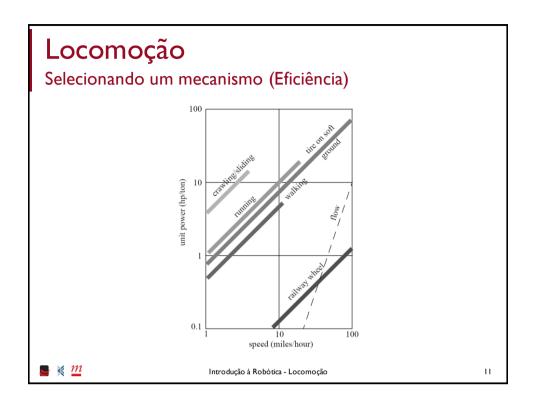
Natureza

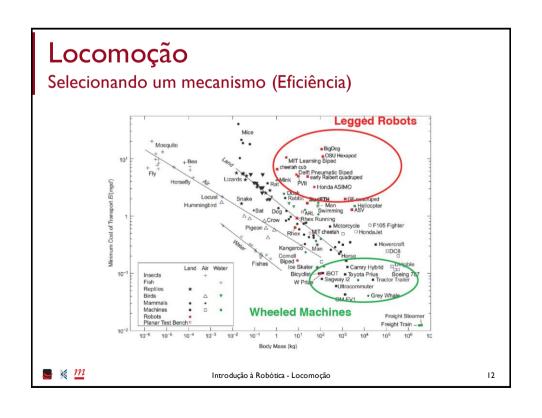
- Rolar é o método mais eficiente
 - Não encontrado na natureza. Quem inventou?!
- O movimento realizado por um bípede ao caminhar é semelhante à um rolamento


Introdução à Robótica - Locomoção

9

Locomoção


Mecanismo bípede de caminhar


- Rolamento de um polígono com um comprimento lateral igual ao comprimento do passo
- Quanto menor o passo fica, mais o polígono tende a um círculo
- Possui vantagens
 - Transpor obstáculos

■ 🙀 <u>m</u>

Introdução à Robótica - Locomoção

Selecionando um mecanismo (Eficiência)

- A escolha de um mecanismo depende
 - Características do terreno
 - Complexidade e peso do robô
 - Velocidade de operação desejada
 - Limitações no gasto energético

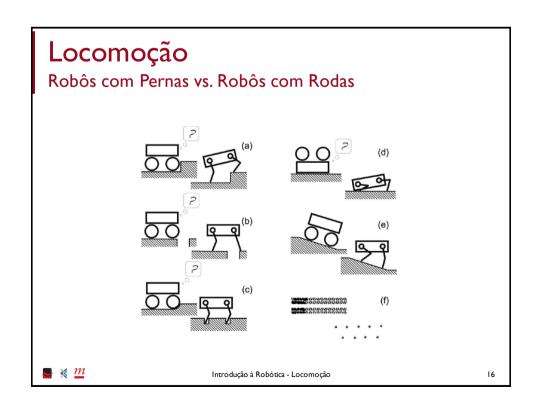
Introdução à Robótica - Locomoção

13

Locomoção

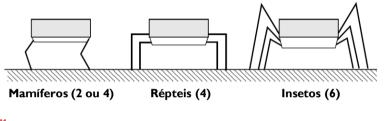
- Locomoção
 - Interação física entre o robô e o ambiente
- Principais focos de análise
 - Forças de interação
 - Mecanismos
 - Atuadores

■ 🙀 <u>m</u>


Introdução à Robótica - Locomoção

Questões importantes

- Estabilidade
 - Número de pontos de contato
 - Centro de gravidade
 - Estabilização (estática/dinâmica)
- Características de contato
 - Ponto ou área de contato
 - Ângulo de contato


Introdução à Robótica - Locomoção

15

Robôs com Pernas

- Número de pernas → Complexidade
 - Quanto menor mais difícil é o equilíbrio
 - Ouanto maior mais difícil é o controle
 - Estabilidade estática demanda três pernas

 \blacksquare \bowtie m

Introdução à Robótica - Locomoção

17

Locomoção

Robôs com Pernas

- Ao caminhar as pernas perdem o contato
 - Como fica a estabilidade?
- Caminhada estática
 - Pelo menos 4 (ou 6) pernas são necessárias
 - Por que?
- Andar é um problema difícil
 - Por isso levamos quase um ano aprendendo!

■ < m</p>

Introdução à Robótica - Locomoção

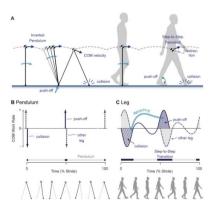
Robôs com Pernas

Caminhada estática

- Estável sem se movimentar
- Lento e ineficiente
- Seguro

Caminhada dinâmica

- Em constante movimento
- Rápido e eficiente
- Atuação constante


Introdução à Robótica - Locomoção

19

Locomoção

Robôs com Pernas

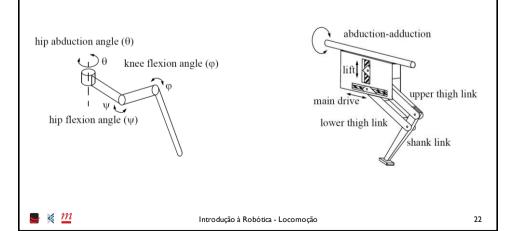
Caminhar humano: Pêndulo invertido

 \blacksquare \bowtie m

Introdução à Robótica - Locomoção

Robôs com Pernas – Movimentando uma perna

- São necessários pelo menos 2 DoF
 - Movimentos de <u>levantar</u> e <u>girar</u>
- Junta tornozelo (4 DoF)
 - Pode melhorar o caminhar
 - Maior complexidade do projeto e locomoção
- Na maioria dos casos são utilizados 3 DoF


Introdução à Robótica - Locomoção

21

Locomoção

Robôs com Pernas – Movimentando uma perna

Exemplos de pernas com 3 DoF

Robôs com Pernas - Marcha

- Em sistemas com várias pernas, é necessário existir algum tipo de coordenação
- A marcha (gait) é descrita pela sequência de eventos de erguer/descer cada perna
- Para um robô com k pernas, existem

$$N = (2k - 1)!$$

- possíveis sequências distintas de eventos
- \blacksquare \bowtie m

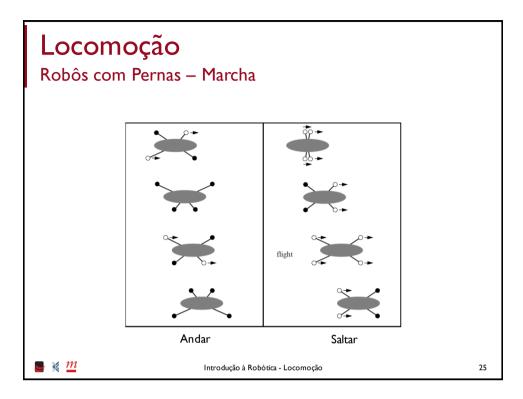
Introdução à Robótica - Locomoção

23

Locomoção

Robôs com Pernas - Marcha

• Para um robô bípede (k = 2)


$$N = (2k - 1)! = 3! = 3 \cdot 2 \cdot 1 = 6$$

- Possíveis eventos
 - Erguer PD, Erguer PE, Descer PD, Descer PE
 - Erguer PD e PE, Descer PD e PE
- Para um robô hexapoda (k = 6)

$$N = 11! = 39.916.800$$

 \blacksquare \bowtie m

Introdução à Robótica - Locomoção

Robôs com Rodas

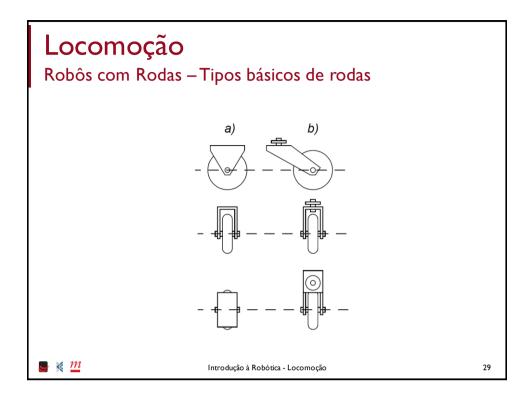
- Idealmente, realiza um deslocamento de $2\pi r$ por rotação, onde r é o raio da roda
- Dificuldades se o terreno apresentar irregularidades maiores que o raio da roda
- Problemas também em terrenos "macios"
 - Areia, lama, ...

Introdução à Robótica - Locomoção

Robôs com Rodas

- Apropriada para a maioria das aplicações
 - Estabilidade
 - Manobrabilidade
 - Controlabilidade
- O tipo da roda irá depender da aplicação
 - Existem diferentes tipos?!

Introdução à Robótica - Locomoção


27

Locomoção

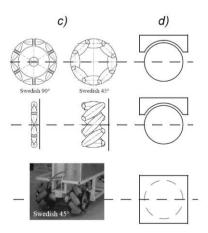
Robôs com Rodas - Tipos básicos de rodas

- Padrão
 - 2 DoF
 - Rotação em torno do eixo da roda (motor) e do ponto de contato
- Castor
 - 3 DoF
 - Rotação em torno do eixo da roda, do ponto de contato e do eixo castor

Introdução à Robótica - Locomoção

Robôs com Rodas - Tipos básicos de rodas

- Sueca (omnidirecional)
 - 3 DoF
 - Rotação em torno do eixo da roda, dos rolamentos e do ponto de contato
- Esférica
 - Alto grau de mobilidade
 - Difícil de ser executada na prática


 \blacksquare \bowtie m

Introdução à Robótica - Locomoção

3

Locomoção

Robôs com Rodas - Tipos básicos de rodas

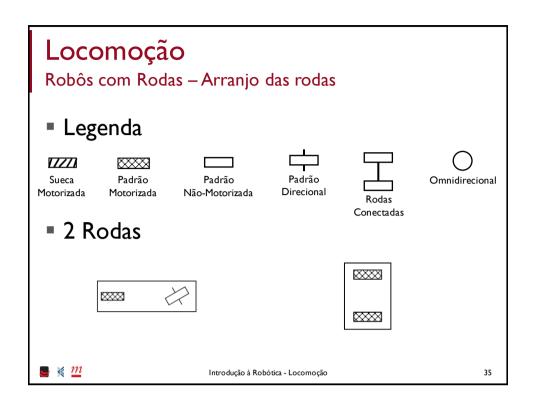
■ ≰ <u>m</u>

Introdução à Robótica - Locomoção

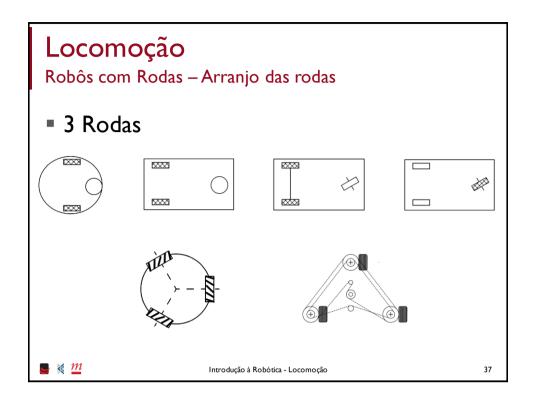
Robôs com Rodas - Tipos básicos de rodas

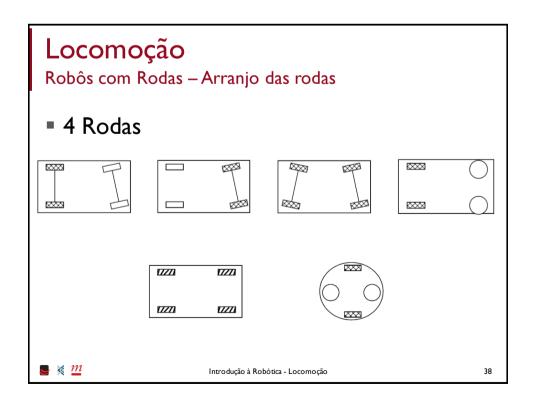
 \blacksquare

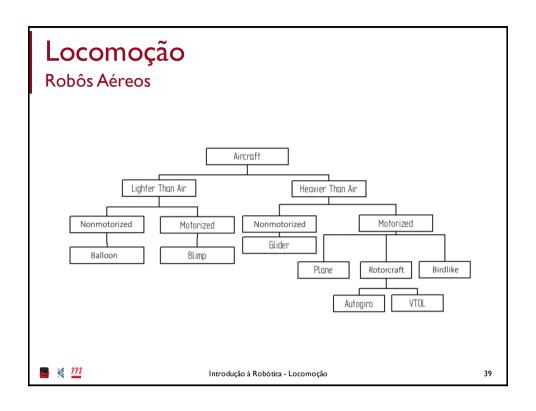
Introdução à Robótica - Locomoção


33

Locomoção


Robôs com Rodas - Projeto


- Três rodas são suficientes para estabilidade
 - CoG no triângulo dos pontos de contato
- Ao utilizar mais do que três rodas
 - Estabilidade é melhorada
 - Suspensão flexível é recomendada
- Rodas maiores → Obstáculos maiores
 - É necessário um torque maior


Introdução à Robótica - Locomoção

Robôs com Asas

- Asa rotativa
 - Alta manobrabilidade
 - Baixa autonomia de voo

■ 🤘 <u>m</u>

Introdução à Robótica - Locomoção

41

Locomoção

Outros tipos de mecanismos de locomoção

■ ≰ <u>m</u>

Introdução à Robótica - Locomoção

