
1

Autonomous Mobile Robots

Lecture 08: Reactive Control

Lecture is based on material from Robotic Explorations: A Hands-on Introduction to Engineering, Fred Martin, Prentice Hall, 2001.

Copyright Prentice Hall, 2001 2

Outline

• Reactive vs. Algorithmic Control

• Multi-Tasking

• Subsumption Architecture

• Priority-Based Control Program

• How the Prioritization Algorithm Works

• Using Reactive Control

– Robo-Miners

– Collecting Soda Cans

– Reactive Groucho

• Extending the Prioritization Framework

2

Copyright Prentice Hall, 2001 3

• Subsumption Architecture: Read Brooks, R. A. and A. M. Flynn,

“Fast, Cheap and Out of Control: A Robot Invasion of the Solar

System,” Journal of the British Interplanetary Society, October 1989,

pp. 478--485. Web site:

http://www.ai.mit.edu/people/brooks/papers/fast-cheap.pdf

Homework #8

Copyright Prentice Hall, 2001 4

Reactive vs. Algorithmic Control

• Algorithmic Control: robot’s program is fundamentally a series of steps or actions to

be taken in a predetermined order.

– Most effective when the robot’s world and its interactions with it are well-

structured

• Manipulator arms in factories typically use algorithmic control with great

success

– Loses its appeal when the robot must deal with unexpected situations

– When it is extended to deal with error situations, the algorithmic method becomes a

complicated tree of branching decisions that is hard to design and debug

• Reactive Control: robot’s program is organized around a collection of separate mini-

programs, all running at once and able to take control of the robot as they see fit

– For a very simple, minimal HandyBug program, there might be

– a touch sensor process, which monitored the robot’s touch sensors and caused the

robot to back up and turn when it hit something

– a periodic turn process, that caused the robot to take a turn every now and then

– and a wander process, that caused the robot simply to move

• Reactive control excels in complex situations with many unpredictable interactions

3

Copyright Prentice Hall, 2001 5

Multi-Tasking

• Touch process: if a touch sensor is pressed,

then its action will run, and it will back up the

robot and turn a little

• Turn process: activates every ten seconds,

causing the robot to make a small turn

• Wander process: is always active, and causes

the robot to drive straight ahead

• Which process gets priority over the others?

• While all processes can be active at once,

checking their conditions to determine

whether or not they should do something, only

one process can have control of the robot’s

outputs at at given time

• Fixed priority system: each process is

assigned a priority level; at any given time,

the process with highest priority gets control

of the robot

Arrows indicate a path of priority among

three processes. Touch has the highest

priority, followed by Turn and then

Wander. This ordering makes sense

because while the robot’s wandering about,

if it hits something, the obstacle avoidance

should take precedence over the wandering.

Copyright Prentice Hall, 2001 6

Multi-Tasking

• IC comes with the ability to multi-task, or run several programs at once

• Ideal for reactive robot programming, where the robot has several “behaviors”

running at the same time

• As it stands, sensor_beep() will never run, because the computer would

be stuck in an infinite loop performing back_and_forth()

void main () {

back_and_forth();

sensor_beep();

}

void back_and_forth () {

while (1) {

fd(0); msleep(500L);

bk(0); msleep(500L);

}

}

void sensor_beep () {

while (1) {

if (analog(0) < 100) beep();

}

}

4

Copyright Prentice Hall, 2001 7

Multi-Tasking

void main () {

start_process(back_and_forth());

start_process(sensor_beep());

}

• IC’s start_process() function, however, allows multiple programs

to execute in tandem:

• Now, both subroutines will execute at once; motor 0 will flash back and

forth, and the beeper will trigger whenever analog sensor 0 falls below 100

• Note that start_process() can also be used from IC’s command

line on the host computer

• IC’s multi-tasking capability makes it easy to implement reactive control

for robot programming

Copyright Prentice Hall, 2001 8

Subsumption Architecture

• Professor Rodney Brooks of the MIT Artificial Intelligence Laboratory is considered the

father of the reactive robotics approach, which he calls “behavioral robotics.” The central

idea of Brooks’ approach is that more sophisticated robot competencies should be built on

top of simpler ones, an approach he calls the subsumption architecture.

• Instead of all robot inputs feeding into a sensory perception unit, which creates a “world

model” of the robot’s environment, which feeds into a planning module, Brooks has argued

that robot perception and action should be closely linked, and that complex behaviors can

be built from the interactions of simple ones.

• Example: a robot that must walk should first learn to stand. Then later behaviors can

“exploit” earlier ones: a task which causes a legged robot to move its legs can make use of

the knowledge embedded in the behavior that allows the robot to simply stand.

• Brooks has proposed that future unmanned interplanetary missions should be performed by

hundreds—or thousands—of simple, insect-like robots that act in teams to accomplish

work, rather than a large and complicated monolithic device. Individual robots could be

considered expendable without jeopardizing the success of the entire mission, whereas if a

single large robot had a failure, the mission would be over.

• Homework #6: Read: Rodney Brooks’s paper on “Fast, Cheap, and Out of Control”

5

Copyright Prentice Hall, 2001 9

Priority-Based Control Program

• Creates priority-based, multi-tasking robot programs

• Example program:

– priority.c, contains the prioritization code

– plegobug.c, contains standard movement and

touch sensor routines for the HandyBug robot;

i.e., forward(), backward(), left(),

right(), left_touch(), and

right_touch()

– lb1task.c, contains one robot behavior

• Generic touch sensor program: simple, clear, only

deals with issues that concern the task

• Need a prioritization structure to prevent conflicts

• Assign each task a process number & priority

level:

– Process numbers identify task when issuing

motor commands; allows prioritization routine to

identify motor commands of each different task

– Priority level allows tasks with higher priority to

supersede tasks with lower priority

/* generic touch sensor program */

void touch () {

while (1) {

if (left_touch()) {

backward(); msleep(500L);

right(); msleep(500L);

}

else if (right_touch()) {

backward(); msleep(500L);

left(); msleep(500L);

}

}

}

Copyright Prentice Hall, 2001 10

Priority-Based Control Program

/* touch sensor process */

void touch (int pid) {

while (1) {

if (left_touch()) {

enable(pid);

backward(pid); msleep(500L);

right(pid); msleep(500L);

disable(pid);

} else if (right_touch()) {

enable(pid);

backward(pid); msleep(500L);

left(pid); msleep(500L);

disable(pid);

}

}

}

Rewritten Touch Sensor Task:
• pid = process ID (process identifier) argument is used in

movement commands to indicate which process is requesting

which motor commands

• Pair of commands used to enable and disable a process’s

functioning

• Separately (and in parallel), prioritization routine determines

which process is enabled and has the highest priority, and then

issues movement commands selected by that process to motors

• If a process has enabled itself and it has the highest priority of

all enabled processes, then its movement commands get to run

• Disable(pid): issued after each set of movement commands

that react to a touch sensor press

– Process must disable itself when done so that other

processes that have lower priority get a chance to operate

– If not, then process would have control of the robot even

if it were not issuing any movement commands (unless a

process with higher priority were active)

6

Copyright Prentice Hall, 2001 11

Priority-Based Control Program

/* lb1task.c: main program for

LEGObug and priority.c

one task: touch */

void main () {

int pid= 0;

/* touch sensor */

process_priority[pid]= 3;

process_name[pid]= "Touch";

start_process(touch(pid++));

/* motor arbitration process */

num_processes= pid;

start_process(prioritize());

}

Main Routine:
• Setting up the touch sensor task:

(1) Process priority is assigned: touch sensor process

is given priority level 3 (zero priority is off; higher

numbers are higher priority)

(2) Process name is assigned: name is displayed by

the prioritization program when the process is made

active

(3) Process itself is launched, and the process counter

variable, pid, is incremented for the next process

setup

• Launching prioritization program:

– Before doing so, the process counter variable is

stored in the program global num_processes

– This is an efficiency measure for the prioritize()

program

Copyright Prentice Hall, 2001 12

Priority-Based Control Program

Try out on HandyBug:
• Load the file lb1task.lis, which loads the files lb1task.c, plegobug.c,andpriority.c

• In plegobug.c, motor and sensor wiring connections are defined: left motor in motor port 0,

right motor in motor port 3, left touch sensor in digital port 7, and right touch sensor in digital

port 8.

• With the full program running, notice that HandyBug just sits there unless a touch sensor is

pressed. That’s because when the touch sensors are not pressed, the touch() process is disabled,

and since it’s the only control task, therefore no control tasks are active. The prioritize() routine

realizes that no tasks are active, and it shuts the motors off and displays the message “No tasks

enabled.”

• When a touch sensor is pressed, then the touch sensor task enables itself and issues motor

commands to back up and turn away from the direction of contact. While the touch sensor task is

active, prioritize() issues its motor commands to the motors, and displays the message “Running

touch.”

• HandyBug as an artificial creature: it can get out of the way if something hits its. HandyBug

doesn’t go anywhere on its own, but if something comes and bother it, it will move. The

prioritization scheme we have been using thus far does not support one task taking advantage of

another’s capabilities; it only allows one task to override (or suppress, in Brooks’ language)

another. But it provides a good start in working with the types of ideas Brooks has developed.

7

Copyright Prentice Hall, 2001 13

Priority-Based Control Program

/* lb2task.c: main program for LEGObug and priority.c

two tasks: periodic_turn and touch */

void main () {

int pid= 0;

/* touch sensor */

process_priority[pid]= 3;

process_name[pid]= "Touch";

start_process(touch(pid++));

/* periodic turn */

process_priority[pid]= 2;

process_name[pid]= "Turn";

start_process(periodic_turn(pid++));

/* motor arbitration process */

num_processes= pid;

start_process(prioritize());

}

/* periodic turn: every 10 secs, turn a bit */

void periodic_turn (int pid) {

while (1) {

if (((int)seconds() % 10) == 9) {

enable(pid);

right(pid); msleep(500L);

disable(pid);

msleep(500L); } } }

Add a Turn Task:
• Make a quick turn every 10 seconds

• The periodic_turn() routine is simple,

with a tricky conditional expression in the if

statement:

• Every ten seconds, the conditional fires and runs

the code to make HandyBug turn: first it enables

itself, then it turns right for a half a second, then

it disables itself (allowing other processes to take

over), and then it waits another half second.

• Last delay is necessary because the conditional

expression will be true for an entire second every

ten seconds. Without trailing delay, the if

statement would fire again immediately, and

HandyBug would end up turning for a whole

second.

• Try out HandyBug’s dual behavior code—load

lb2task.lis, which loads the new

lb2task.c along with unchanged versions of

plegobug.c and priority.c (unload

lb1task.c first!)

Copyright Prentice Hall, 2001 14

Priority-Based Control Program

if (((int)seconds() % 10) == 9) {…}

Type Coercion:
• seconds() routine reports the elapsed time as a

floating point number; e.g., 53.374 sec. By prefacing the

functional call with “(int),” this floating point value is

converted to an integer value (e.g., 53).

• Necessary so that we may use the “%” operator, which is

the arithmetic modulus function

• “(int)seconds() % 10” means, “take the elapsed

system time, convert it to an integer, and report the

remainder after dividing by 10”

• This provides a number from 0 to 9; the rest of the if

statement simply compares this value with 9

• Thus, in the final second of every ten second period, the

full expression yields a true, and the clause of the if

statement runs

• Reason for use: IC does not have a modulus operator

that works on floating point numbers. It does support

floating point division, but not remainder. So the

conversion to integer is used to circumvent this limitation.

8

Copyright Prentice Hall, 2001 15

Priority-Based Control Program

/* lb3task.c main program for LEGObug and priority.c

three tasks: periodic_turn, touch and wander*/

void main () {

int pid= 0;

/* touch sensor */

process_priority[pid]= 3;

process_name[pid]= "Touch";

start_process(touch(pid++));

/* periodic turn */

process_priority[pid]= 2;

process_name[pid]= "Turn";

start_process(periodic_turn(pid++));

/* wander */

process_priority[pid]= 1;

process_name[pid]= "Wander";

start_process(wander(pid++));

/* motor arbitration process */

num_processes= pid;

start_process(prioritize());

}

/* wander process: just go forward */

void wander (int pid) {

enable(pid);

forward(pid); }

Add a Wander Task:
• Simply drives straight ahead

• “Wandering” will happen because

periodic_turn() will kick in every ten

seconds, causing HandyBug to veer from a

straight-line path.

• Notice: no loops are needed to work: it

simply enables itself, and sets its movement

command as drive forward.

• wander() is installed in the standard way

with a priority of 1, the least among the three

processes now installed.

• Load lb3task.lis to give it a try. Now

HandyBug is a full-fledged explorer robot,

able to roam about a room, a back up and turn

away from any obstacles in its way—after

hitting into them, of course!

Copyright Prentice Hall, 2001 16

How the Prioritization Algorithm Works

Basic Concept:
• Each process has a priority level, a pair of

output values representing its left and right

motor commands, an enable/disabled state

indicator and a process name character string

associated with each process for display to user

• The prioritize() process, which runs

alongside all of the behavior processes cycles

through the list of enabled processes, finds the

one with the highest priority, and copies its

motor output commands to the actual motors.

• Two global variables used by prioritization

method:

– num_processes, which hold the

number of processes (to simply the search

for the one with the highest priority)

– active_process, which is

dynamically set by the prioritize()

process each time it chooses a behavior

task to run

Five global arrays used to store behavior

process state variables:

process_priority[] Stores each

process’s priority level

process_enable[] Indicates whether a

process is enabled or disabled at any given

point in time. When a process is enabled,

its priority level is stored here; when a

process is disabled, a zero is stored.

left_motor[] Holds a process’s current

left motor command

right_motor[] Holds a process’s

current right motor command

process_name[] Stores the process

name

9

Copyright Prentice Hall, 2001 17

How the Prioritization Algorithm Works

Data Structures:
process_name[] holds the process

names as set up by main()

process_priority[] holds the

fixed priority values as assigned to the

processes in main()

process_enable[] holds dynamic

enable values

– Touch is enabled, since its

priority level has been copied into

the process_enable[] array.

Turn is disabled, and Wander is

always enabled

Left_motor[] and

right_motor[] hold values assigned

by the behavior tasks

– Even though Turn is disabled, its

entries are still present in the motor

arrays from a previous time. No

need to clear them out

Active_process assigned by

prioritize(), is zero, indicating that the

process with an index 0—the touch sensor

process—is active.

Copyright Prentice Hall, 2001 18

How the Prioritization Algorithm Works

Code:
• Enable: copy process’s priority level,

which is stored in process_priority[], into

“enabled” array

• Disable: zero stored in process’s position

in process_enable[] array

• Prioritize: Initialize local variable max=0,

then scan process_enable[] array,

looking for the process with the highest

priority level.

• If max =0 after looking through all of the

installed processes, then none of them is

enabled. In this case, both motors are turned

off, and the message “No tasks

enabled” is displayed on the LCD screen.

• If max>0: then at least one process is

enabled. The next step is to again search

through the list of processes, and find one

with a priority that matches the maximum

value.

/* priority.c: arbitration program for

multi-behavior robot control */

/* define process tables */

int process_priority[10];

int process_enable[10];

char process_name[0][10];

/* define motor output tables */

int left_motor[10];

int right_motor[10];

/* globals */

int num_processes= 0;

int active_process= 0;

/* set process_enable entry to process’s priority level */

void enable (int pid) {

process_enable[pid]= process_priority[pid];

}

/* set process_enable entry to 0 */

void disable (int pid) {

process_enable[pid]= 0;

}

10

Copyright Prentice Hall, 2001 19

How the Prioritization Algorithm Works

Code:
• If there is a “tie,” with more than

one process at the maximum

priority, select the first one it

encounters (could be re-written to

randomly choose a process)

• Global variable

active_process is set to hold

the index of the highest priority

process, and then the motor

commands of this process are

written out to the motor ports.

• Finally, the name of the active

process is printed on the LCD

display.

• At this point the loop repeats, and

the process selection activity begins

anew.

void prioritize () {

int max, i;

while (1) {

/* find process with maximum priority */

max= 0;

for (i=0; i< num_processes; i++)

if (process_enable[i] > max) max= process_enable[i];

/* if no processes enabled, turn off motors */

if (max == 0) {

motor(LEFT_MOTOR_PORT, 0); motor(RIGHT_MOTOR_PORT, 0);

printf("No tasks enabled\n");

} else {

/* get pid of active process */

/* if more than one at highest level, get the first one */

for (i=0; i< num_processes; i++)

if (process_enable[i] == max) break;

active_process= i;

/* set the motors based on the commands of this process */

motor(LEFT_MOTOR_PORT, left_motor[active_process]);

motor(RIGHT_MOTOR_PORT, right_motor[active_process]);

/* display name of active process */

printf("Running %s\n", process_name[active_process]);

} } }

Copyright Prentice Hall, 2001 20

How the Prioritization Algorithm Works

HandyBug Movement and Touch Routines:

/*

plegobug.c: movement and touch sensor commands

for LEGObug with priority.c

*/

/* motor and sensor ports */

int LEFT_MOTOR_PORT= 0;

int RIGHT_MOTOR_PORT= 3;

int LEFT_TOUCH_PORT= 7;

int RIGHT_TOUCH_PORT= 8;

/* movement commands */

void forward (int pid) {

left_motor[pid]= 100;

right_motor[pid]= 100;

}

void backward (int pid) {

left_motor[pid]= -100;

right_motor[pid]= -100;

}

void right (int pid) {

left_motor[pid]= 100;

right_motor[pid]= -100;

}

void left (int pid) {

left_motor[pid]= -100;

right_motor[pid]= 100;

}

void halt (int pid) {

left_motor[pid]= 0;

right_motor[pid]= 0;

}

/* sensor functions */

int left_touch () {

return digital(LEFT_TOUCH_PORT);

}

int right_touch () {

return digital(RIGHT_TOUCH_PORT);

}

11

Copyright Prentice Hall, 2001 21

Using Reactive Control: Robo-Miners
• Table Structure:

– had central raised

platform with air

hoses underneath

– At start of game,

balls were placed in

each of the four air

streams emanating

from hoses

– Additional balls

placed at various

other points on the

table surface and

edges

• Scoring: points

awarded for collecting

balls, depositing balls

into one’s goal area and

placing collected balls

into the air streams

• Navigating:

– Use downward-facing reflective light sensors on white/black areas

on table, cross-hatched pattern on raised platform

– Use Hall-effect sensors to detect magnetic stripping embedded in

table from starting circles to raised platform

– Use touch switches to detect Wooden molding “rumble strips”

1995 MIT Robot Design contest

Copyright Prentice Hall, 2001 22

Using Reactive Control: Robo-Miners

The Arm

• Algorithmic Control Strategy

• Structure: a small car at the end of a lazy tongs arm.

• Strategy: the car would drive out of a nest, scoop up one ball, and drive backward into the

nest while the lazy tongs held it straight. The nest would then rotate the car-arm assembly

into position to grab the next ball, using shaft encoding to turn to predetermined “correct”

angles.

• Problems Encountered:

• the nest’s base would rotate with respect to the playing surface, thus rendering

subsequent rotations incorrect. This was solved by stretching LEGO tires as big rubber

bands.

• the robot was highly sensitive to correct initial placement

• the ball-grabbing mechanism at the end of the car-arm extension didn’t perform well

• the overall mechanism was not terribly reliable

• Ultimately, the robot did quite poorly in the contest, as what seemed like an easy win (“just

reach out and grab the balls; we know where they are”) turned out to be difficult to perform

in practice

12

Copyright Prentice Hall, 2001 23

Using Reactive Control: Robo-Miners

Fluffy the Sunshine Robot

• Reactive Control Strategy

• Designed in two or three days before the contest, was the result of a team of students discarding

three weeks’ of effort trying to get their algorithmic robot to work with any degree of reliability.

• Strategy: absurdly simple: wandered around the playing field, scooping up balls that it

happened to run over. It had two touch sensors, and would back up and turn when either of them

were triggered.

• On the one hand, Fluffy was completely unpredictable: one never knew which balls it might

collect.

• On the other hand, it was incredibly reliable—because it was so simple, it always got at least a

few balls.

• By the scoring method of the contest, simply collecting balls scored the least number of points;

returning them to your goal or placing them in the air stream scored many more points.

• During the contest itself, even though all it could do was collect a few balls, Fluffy surprised

everyone by tying for second place overall.

• Nearly all of the complex, algorithmic robots were at least as likely to fail completely and score

no points as they were to score a sizable bounty, and Fluffy almost carried the day.

Copyright Prentice Hall, 2001 24

Using Reactive Control: Robo-Miners

Comments

• While Fluffy may have seemed like an isolated phenomenon to the casual observer, it was not.

• Just about every year of the MIT contest, there are one or two robots with a similar story behind

them as Fluffy: students who became frustrated with repeated failures during the progress of their

algorithmic robot design, and decided to rebuilt a simple robot from scratch.

• With almost no time remaining, the only approach that seems viable is the reactive one (though

students are not consciously making a decision between algorithmic and reactive).

• The surprise fact is that a last-ditch reactive machine comes in second or third place nearly every

year of the MIT contest. The culture of the MIT contest is heavily weighted toward algorithmic

machines, so the successes of the reactive machines are typically blamed on luck—people don’t

remember that in previous years, reactive machines have also done well.

• Students in the MIT class tend to blame performance failures on particular component failures or

unexpected circumstances, rather than re-evaluating their overall control strategies.

• It requires a new way of thinking to design a system that works properly only as the result of

many small interactions rather than a master plan.

13

Copyright Prentice Hall, 2001 25

Using Reactive Control: Soda Can Collector

• While a graduate student at the Artificial Intelligence Laboratory at MIT, Jonathan Connell

created a robotic arm that collected soda cans, using the behavioral control principles of Rodney

Brooks.

• Connell’s arm controller was based on a collection of 15 independent behaviors that operated

with six levels of priority:

– Grab (which closed the hand anytime something broke a light sensor beam between two

fingers)

– Excess (which prevented the hand from squeezing too hard)

– Extend Over (which helped the arm move out and above a soda can)

– Home (which brought the arm near to the robot’s body)

• Designed in the early 1980’s, when today’s advanced 32–bit microprocessors were prohibitively

expensive and complex, Connell’s robot used a collection of simple 8–bit microprocessors —

indeed, the same one used in the Handy Board — wired into a local network.

• Each microprocessor ran a couple of the behavior tasks, and if the robot needed computational

power for new behaviors, Connell simply plugged in a new microprocessor board.

Copyright Prentice Hall, 2001 26

Using Reactive Control: Reactive Groucho

14

Copyright Prentice Hall, 2001 27

Using Reactive Control: Reactive Groucho

• Would it be possible to devise an effective reactive control program for Groucho’s

task?

• Eight separate behaviors at five priority levels.

• Main behaviors for getting work done:

– Search activates when Groucho is on its own side and isn’t carrying any

balls, and drives the robot downhill—toward the ball trough, where balls

should be waiting.

– Scoop is intended to run after Search, when Groucho reaches the far wall on

its side. Then Scoop triggers and turns Groucho so that it can pick up some

balls.

– Deliver should trigger next, causing Groucho to drive uphill.

– When the robot drives over to the opponent’s side Dump activates, releasing

the balls.

– Then Return can become active, when Groucho notices it is on the

opponent’s side and has no balls.

Copyright Prentice Hall, 2001 28

Using Reactive Control: Reactive Groucho

• Three supervisory processes help make sure Groucho doesn’t get stuck as it performs its

task:

• Panic will drive the robot onto the opponent’s side (if it isn’t already there) when the

contest round is about to expire, as a safety measure

• Touch makes sure that Groucho does not get wedged if it runs into a wall unexpectedly

• B-Brain monitors all of the other behaviors and executes an emergency “get unstuck”

action if it notices that Groucho has been lodged in the same task for too long.

• Exercise:

(a) This collection of behaviors for getting Groucho to perform its job has not been

tested. Do you think it would work? Why or why not? What are some problems with the

approach? How can they be remedied?

(b) If you are not confident that the solution presented is viable, invent a different

collection of behaviors that would be effective in getting Groucho do perform the ball

collection and transportation task.

(c) With a Groucho-style robot and a Robo-Pong playing field, implement your choice

of the solution presented, the solution with your modifications, or your approach

(whichever you have the most confidence in). What surprised you as you tested the

solution?

15

Copyright Prentice Hall, 2001 29

Extending the Prioritization Framework

• Two different extensions to the prioritization program

•Dynamic Priorities. The framework presented uses static robot task priorities that

are established at start-up time and do not change. But there is no reason that a

task’s priority level could not be a dynamic quantity which varied depending upon

various internal and external factors.

• Consider an example based on the Groucho robot task:

– Suppose that Groucho had several different strategies for searching for balls,

some more conservative and others more aggressive and risky.

– At the start of the round, it would make sense to try the conservative

approaches first, but if these failed, to switch to the more aggressive search

modes.

– A supervisory task could monitor the Groucho’s performance, and elapsed

time, and adjust other tasks’ priority levels as it saw fit.

• Exercise: Describe other ways that Groucho could be improved with a dynamic

task priority structure.

Copyright Prentice Hall, 2001 30

Extending the Prioritization Framework

• A-Brain, B-Brain. In his famous book The Society of Mind, Marvin Minsky present a

particular model of cognitive operation that he terms A-Brain and B-Brain:

– A-Brains: Suppose one part of the brain is directly connected to a creature’s sensor

and motor apparatus, and is responsible for performing sensory-motor tasks such as

hand-eye coordination.

– B-Brains: Other parts of the brain have no direct connection to the sensory-motor

apparatus, and are only connected to various A-Brains. B-Brains are perfectly situated to

monitor how well the A-Brains are doing, and should be able to notice unproductive

loops or other failure modes that the A-Brains may have without them realizing it. B-

Brains are responsible for stimulating and suppressing A-Brain function to achieve

maximum benefit for the organism.

• This idea fits wonderfully into the reactive model of robot control. The reactive Groucho

include a simple B-Brain component that would notice if Groucho was stuck in a single

behavior for too long.

• Exercise: Based on Minsky’s concept, generalize this approach. For example, write a B-

Brain function that notices if Groucho were to go back and forth between a pair of behaviors

for several iterations. What other kinds of unproductive loops could be recognized? How

would you do so?

