
1

Autonomous Mobile Robots

Lecture 07: Algorithmic Control

Lecture is based on material from Robotic Explorations: A Hands-on Introduction to Engineering, Fred Martin, Prentice Hall, 2001.

Copyright Prentice Hall, 2001 2

Outline

• Algorithmic vs. Reactive Control

• Approaches to Robot Control

• Robo-Pong Contest

– Groucho (code, mechanics and strategy)

• Strengths and Weaknesses of Algorithmic Control

• Exercise: Groucho’s Program

• Exit Conditions

2

Copyright Prentice Hall, 2001 3

• Robot Contests: Read Appendix F of Robotic Explorations

(textbook)

Homework #7

Copyright Prentice Hall, 2001 4

Algorithmic vs. Reactive Control

• How to design an overall control strategy for operating a robot?

• Feedback control is appropriate for one piece of a robot’s behavior, e.g.,

tracking a wall

• How should a robot coordinate a bunch of these lower-level feedback

behaviors?

• We will examine two differing approaches to this problem:

– Algorithmic control refers to a procedural series of steps or phases that

a robot’s program moves through in service of accomplishing some task

– Reactive control refers to a collection of stimulus-response behaviors

that dynamically trigger and retire as the robot moves through the

physical environment

3

Copyright Prentice Hall, 2001 5

Approaches to Robot Control

• Robot control refers to the way in which the sensing and action of a robot are coordinated.

There are infinitely many possible robot programs, but they all fall along a well-defined

spectrum of control. Along this spectrum, there are four basic practical approaches being

used today:

– Deliberative Control: Think hard, then act.

– Reactive Control: Don’t think, (re)act.

– Hybrid Control: Think and act independently, in parallel.

– Behavior-Based Control: Think the way you act.

• References:

– Maja J. Mataric, “Behavior-Based Control: Examples from Navigation, Learning,

and Group Behavior,” Journal of Experimental and Theoretical Artificial

Intelligence, 9(2–3), 1997, 323–336.

– Behavior-Based Robotics by R. Arkin, MIT Press, 1998.

– MIT Encyclopedia of Cognitive Sciences, Robert A. Wilson and Frank C. Keil, eds.,

MIT Press, 1999.

Copyright Prentice Hall, 2001 6

Approaches to Robot Control

• No single approach is “the best” for all robots; each has its strengths and weaknesses.

Control requires some unavoidable trade-offs:

– Thinking is slow

– Reaction must be fast

– Thinking allows looking ahead (planning) to avoid bad actions

– Thinking too long can be dangerous (e.g., falling off a cliff, being run over)

– To think, the robot needs (a lot of) accurate information

– The world keeps changing as the robot is thinking, so the slower it thinks, the

more inaccurate its solutions

• As a result of these trade-offs, some robots don’t think at all, while others mostly think

and act very little. It all depends on the robot’s task and its environment.

– If the task and environment require the robot to move and react very quickly,

there is usually no time for thinking, such as in automated fast-moving cars, or in

soccer playing robots

– If the environment does not change much and the robot has enough time, it can

plan far ahead to find the best action, such as in playing chess, monitoring a

warehouse at night, or assembling a complicated object

4

Copyright Prentice Hall, 2001 7

Approaches to Robot Control

Four different approaches to robot control that address these trade-offs:

• “Think hard, then act.” In deliberative control, the robot takes all of the available

sensory information, and all of the internally stored knowledge it has, and it creates a

plan of action. The robot searches through potentially all possible plans until it finds

one that will do the job. This requires the robot to look ahead and think in terms of: “If

I do this next, and then this happens, then what if I do this next, then this happens, : :

:” and so on. This can take a long time, which is why if the robot must react quickly, it

may not be practical. However, if there is time, this allows the robot to act

strategically.

• “Don’t think, react!” Reactive control is a technique for tightly coupling sensory

inputs and effector outputs, to allow the robot to respond very quickly to changing and

unstructured environments. Think of reactive control as a “stimulus-response.” This is

a powerful control method; many animals are largely reactive. Limitations to this

approach are that such robots, because they only look up actions for any sensory input,

do not usually keep much information around, have no memory, no internal

representations of the world around them, and no ability to learn over time.

Copyright Prentice Hall, 2001 8

Approaches to Robot Control

• “Think and act independently, in parallel.” In hybrid control, the goal is to combine

the best of both reactive and deliberative control. In it, one part of the robot’s “brain”

plans, while another deals with immediate reaction, such as avoiding obstacles and

staying on the road. The challenge of this approach is bringing the two parts of the

brain together, and allowing them to talk to each other, and resolve conflicts between

the two. This requires a third part of the robot brain, and as a result these systems are

often called “three-layer systems.”

• “Think the way you act.” Behavior-Based control is inspired from biology, and tries

to model how animal brains may deal with hard problems of both thinking and acting.

Behavior-based systems, like hybrid systems, also have different parts or layers, but

unlike hybrid systems, they are not as different from each other. All of them are

encoded as behaviors, processes that take inputs and send outputs to each other, quite

quickly. So if a robot needs to plan ahead, it does so in a network of behaviors which

talk to each other and send information around, rather than a single planner, as with

hybrid systems. Behavior-based systems are an alternative to hybrid systems; these

days, they are equally powerful and equally popular. However, they are not the same

and thus are used for different types of robot applications.

5

Copyright Prentice Hall, 2001 9

Approaches to Robot Control

• How time, or the lack of it, is handled distinguishes different approaches to robot control

– Deliberative systems look into the future (plan) before deciding how to act.

– Reactive systems respond to the immediate requirements of the environment, and do not look

into the past or the future.

– Hybrid systems respond to some of the urgent requirements, while taking time to think about

some others. This requires waiting for the thinking to finish, or interrupting the reaction based on

new information.

– Behavior-based systems also think and act at the same time, but spread out the thinking over

multiple distributed computation modules (behaviors). Thus they think the way they act, as

quickly as possible.

• In many cases, just by observing a robot’s behavior, it is impossible to tell what control

approach it is using. This is similar to not knowing in what language some program is

implemented, what somebody is thinking, or what exactly makes an animal do what it

does. New robot control “architectures” for structuring robot control are being invented all

the time, as novel applications for robotics are found. Sometimes, they become

specialized robot programming languages. However novel they are, they can still fit into

the fundamental control spectrum just described. Thus, once you can program a robot in

all of the four approaches above, you know all possibilities at your disposal.

Copyright Prentice Hall, 2001 10

Robo-Pong Contest

• Run at MIT January 1991

• Contest involved 2 robots and 15

plastic practice golf balls

• Goal: have your robot transport balls

from its side of table to opponent’s in

60 minutes

• Robot with fewer balls on its side is

the winner

• Table 4x6 feet, inclined surfaces, small

plateau area in center

• Robots start in circles, balls placed as

shown

• Table top painted two colors so that

robots could use reflectance sensors to

determine which side they were on

• Plan encouraged diversity in robot

strategies

Rules

6

Copyright Prentice Hall, 2001 11

Robo-Pong Contest

• Successful robots needed to be able uphill and downhill, maneuver in the trough area, and

coordinate activities of collecting and delivering balls

• Overall, ball-collecting robots were the most popular design choice. This was not surprising in

that they were also the mechanically least complex design

– Harvester Robots: (18 teams) scooped the balls into some sort of open arms and then

pushed them onto the opponent’s side of the playing field

– Eater Robots: (11 teams) similar to harvester approach with the exception that the eaters

collected balls “inside their bodies” before driving over to the opponent’s side. Students

believed the eater robots to be a safer design than the harvesters, since balls couldn’t be

returned to the robot’s own side by the opponent. On the other hand, the eaters were more

mechanically complex and hence more prone to failure.

• Shooter robots: (4 teams) catapulted balls onto the opponent’s side of the table (if a ball went

over the playing field wall on the opponent’s territory, the ball would be permanently scored

against the opponent)

– Building a shooter design required a fair bit of mechanical ingenuity, both in the shooting

mechanism and a device to load balls into the shooter. The four shooters that were finally

fielded were sophisticated and pleasing to watch, but ultimately lost against aggressor

designs, which could trap them easily, and effective collector designs, which delivered

balls back after they had been shot across the table.

Designs

Copyright Prentice Hall, 2001 12

Robo-Pong Contest

From start circle, the robot drives to position 1. It drives forward until striking the wall, and then rotates

to position 2. From there, it climbs up the ramp until crossing the black/white divider (position 3)—

at which point any balls it has collected are dumped onto the opponent’s side. Then it rotates to

position 4, and drives across the center plateau until striking the opposing wall (position 5). Next it

turns to face down the opponent’s slope (position 6), dumping any balls it may have collected along

the center plateau. Then it performs a 180 degree turn, lining itself up to drive down its own slope

(position 7), and it drives downward until striking the back wall (position 8). Finally it rotates to

position 9, and scoops up balls in the trough, continuing the loop at position 1.

Groucho

Strategy pattern of Groucho,

an algorithmic ball-harvester

7

Copyright Prentice Hall, 2001 13

Robo-Pong Contest

• Groucho perfectly exemplifies the

algorithmic approach: a series of actions that

are performed in order to accomplish the

desired task—as a mathematical algorithm

prescribes a series of operations to perform

on data

• Algorithmic approach is based on a linear

series of actions, which are performed in a

repetitive loop

• Sensing may be used in the service of these

actions, but it does not change the order in

which they will be performed.

• Robots rarely go precisely straight or turn a

precise number of degrees so it’s safe to

assume that some kind of feedback based on

the surrounding environment will be

necessary

Groucho’s Code

void groucho() {

while (1) { /* loop indefinitely */

/* for simplicity, assume robot starts at position 1 */

forward();

waituntil_hit_wall();

rotate_left_ninety(); /* now at position 2 */

forward();

waituntil_see_black(); /* position 3 */

rotate_left_ninety(); /* position 4 */

forward();

waituntil_hit_wall(); /* position 5 */

rotate_left_ninety(); /* position 6 */

rotate_onehundred_eighty(); /* position 7 */

forward();

waituntil_hit_wall(); /* position 8 */

rotate_left_ninety(); /* position 9 */

}

}

Copyright Prentice Hall, 2001 14

Robo-Pong Contest

• Basic turtle drive system with pair of

driven wheels one each side.

• Pair of free-spinning rider wheels

mounted parallel to the floor, jutting out

from the front “arms,” for driving along

a wall with no sensing or feedback

required

• Two kinds of sensors: a touch sensor at

the end each of of its “arms,” and a pair

of light sensors facing downward located

near its geometric center. Touch sensors

used for cornering, and light sensors

determined when it had crossed onto the

other side of the table and tracked the

light/dark boundary across the center

plateau.

Groucho’s Mechanics

Schematic of Groucho Robot

8

Copyright Prentice Hall, 2001 15

Robo-Pong Contest

• Groucho did not make a ninety degree turn from

position 1 to position 2, strictly speaking.

• Groucho instead was designed to take corners with a

repetitive series of little turns and collisions back into

the wall.

• Each time Groucho hit the wall, it would back up, turn a

little, and then start driving forward again.

• After about four or five of these iterations, Groucho

would have turned the required amount, and it would be

able to continue along its path

• This turning method was fairly reliable, because even if

the wheels slipped a little on one turn, Groucho kept

turning until the touch sensor no longer struck the

wall—in which case, it would have completed its turn.

• Note that this method works for a wide range of

corners—ones less than and greater than the right angles

on the Robo-Pong playing field.

Groucho’s Strategy

Groucho’s Cornering Algorithm

Copyright Prentice Hall, 2001 16

Robo-Pong Contest

• In performing the ninety degree turn from position 3 to position 4, Groucho did things

differently—it simply executed a single timed turn movement. The students who built Groucho

attempted to use feedback to ensure that the robot would turn the proper amount, but found it

difficult to get reliable results (lacking the wall as a reference point, as they had done with the

inside-corner turns). Instead, a timed turn (with the duration determined experimentally)

performed satisfactorily to them.

• The students did not expect Groucho to be able to cross the center plateau without feedback

sensing, however. This is where the dual light sensor, aimed downward at the playing surface,

was used. As Groucho drove across the table, it made sure that one sensor was kept on the dark

side of the table and the other on the light side. The sensor and a feedback program thus

compensated for any variances in the mechanical performance of Groucho’s geartrain, and

Groucho would reliably reach the opposite side of the plateau, triggering a touch sensor.

• Summary: algorithmic strategy method is relatively simple and can be effective when a straight-

forward algorithm can be devised. The Groucho robot for Robo-Pong is a good example of such

an approach.

Groucho’s Strategy

9

Copyright Prentice Hall, 2001 17

Strengths and Weaknesses of Algorithmic Control

• Strengths of the algorithmic approach: simplicity, directness, and predictability when things go

according to plan

• Weaknesses: inability to detect or correct for problems or unexpected circumstances, and the

chained-dependencies required for proper functioning

– If any one step fails, the whole solution typically fails. Each link-step of an algorithmic solution has a chance

of failing, and this chance multiplies throughout the set of steps, e.g., suppose each step has a 90% chance of

functioning properly on any given trial, and there are six such steps in the solution. Then the likelihood of

overall program working is the likelihood that each steps functions properly: ~53% chance

• How to bolster algorithmic process: have separable steps along the way performed by feedback loops

– Groucho’s handling of inside corners: rather than just turning by a timed amount, Groucho used a series of

little turns and bumps to negotiate the corners. This method implicitly acknowledged that Groucho would not

reliably hit the wall at a perfect perpendicular angle, from which a timed turn could be based. The feedback

used at the corners thereby compensated for variances in the playing field, the performance of the robot, and

real-world unpredictability.

– On the other hand, Groucho did use a timed turn at the crest of the hill, turning in preparation for crossing the

plateau. Perhaps because of the rolling rider wheels, or because the right-angle turn was immediately followed

by a feedback program that tracked the light/dark edge, Groucho’s builders determined that an open-loop,

timed turn was appropriate in that situation.

• By embedding feedback controls within the algorithmic framework, the reliability of the

algorithmic approach is greatly improved.

Copyright Prentice Hall, 2001 18

Exercise: Groucho’s Program

• Construct a program to control Groucho through its

algorithmic strategy (use Groucho mock-up or

HandyBug)

• Write these simple movement and sensor functions

before getting started:

– Movement functions, assuming Groucho is a

standard “turtle” style robot: forward(),

backward(), spin left() and spin

right() (rotate in place), and veer

left() and veer right() (turn while

moving forward by operating one motor and

leaving the other motor off).

– Sensor functions: left touch() and

right touch() for the two touch sensors,

which return 0 if not pressed and 1 if pressed,

and left eye() and right eye() for

the dual light sensors, which return 0 if

positioned above the dark surface and 1 if above

the light surface.

/* grchmain.c */

void groucho()

{

while (1) {

inside_corner(); /* position 1 to 2 */

drive_to_top(); /* 2 to 3 */

align_with_edge(); /* 3 to 4 */

follow_edge_to_wall(); /* 4 to 5 */

dump_ball_shuffle(); /* 5 to 6 to 7 */

drive_to_bottom(); /* 7 to 8 */

inside_corner(); /* 8 to 9 */

}

}

10

Copyright Prentice Hall, 2001 19

Exercise: Groucho’s Program

1. Write a subroutine to negotiate the inside corner, represented by the transition from step 1 to step

2. Name the subroutine inside corner(); upon entry, it should assume that the Groucho

has just struck the wall with either or both of its touch sensors. The subroutine should exit after

Groucho has turned the corner and has been following along the wall on its right side for at

least two seconds

2. Write drive to top(), a subroutine that takes control after inside corner() (position

2) and drives Groucho until it senses the light/dark boundary (position 3). At this point, the

routine should stop Groucho from moving and return.

3. Write align with edge(), which should drive Groucho forward for a second or two

(dumping any collected balls over to the opponent’s side), drive back, and then rotate to parallel

to the light/dark edge (position 4). Use the light sensor to determine when the robot has rotated

back to cross over the light/dark edge, and open-loop timing for the forward and backward

motions. Return when the robot has crossed over the light/dark edge and is ready to follow the

edge across the table.

4. Write follow edge to wall(), which uses the dual light sensor to follow the light/dark

edge across the playing field. The routine should attempt to keep one light sensor on the dark

side and the other on the light side, thereby tracking the edge and traversing the table.

Terminate when either of the touch sensors is pressed, signally that the robot has reached the far

wall of the playing field (position 5).

Copyright Prentice Hall, 2001 20

Exercise: Groucho’s Program

5. Write dump ball shuffle(), which takes Groucho from having contacted the far wall head

on (position 5), to facing down the opponent’s side (position 6), to turning around 180 degrees

heading down its own side with the wall to its right (position 7). This function is difficult to

accomplish using feedback; this exercise should best be done with an actual robot.

Alternatively, this function may be replaced with another call to inside corner.

6. Write drive to bottom(), which drives Groucho straight ahead and terminates when a

touch sensor is pressed (position 8).

7. The final cornering action (positions 8 to 9) may be done with another call to inside

corner().

8. At this point it should be possible to test the groucho() program loop presented at the

beginning of this exercise. If you are working with an actual robot, attempt the unified program

and describe the results.

11

Copyright Prentice Hall, 2001 21

Exit Conditions

• Problem with simple algorithmic approach: there is no provision for detecting, no

less correcting for, problem situations

– Consider Groucho’s program: most of the time, it is waiting for a touch sensor to

trigger the next phase of action. If something were to impede its travel, without

striking a touch sensor, Groucho would just sit there, unable to take corrective

action. Many a robot has failed in this way in contest situations.

– There are a variety of other ways Groucho could fail. Suppose it is crossing the top

plateau, weaving its way back and forth across the light/dark boundary, and the

opponent robot gets in the way, and does trigger a touch sensor. Then Groucho

would begin its behavior that is normally activated when it reaches the opposing

wall. Depending on the interaction between Groucho and the opponent robot, this

might or might not be a sensible thing to do.

• Solution: techniques for error detection, and discuss recovery within an algorithmic

framework.

– Instead, suppose it were possible for Groucho to “know” that it had struck the

opponent, and not the opposite wall. Then it might be possible for Groucho to take

an action that would have a better likelihood of a desirable result, rather than just

blindly proceeding with the algorithmic plan.

Copyright Prentice Hall, 2001 22

Exit Conditions

• Consider: Groucho going from position 4 to 5:

traverses light/dark edge across the playing field.

In the earlier exercise, we named this subroutine

follow _edge_to_wall(); the core

loop of this function is feedback

based on the dual light sensors, with an exit check

from the touch sensors

• Problem: only way this loop can exit: if one of

the touch sensors is pressed; if Groucho were to

hit something without the touch sensors being

pressed, the loop simply would never end

• Solution: allow the subroutine to time out. After

a predetermined period of time has elapsed, the

subroutine exits even if a touch sensor was not

pressed.

Timeouts
/* "eye" sensors return 1 if above light,

0 if above dark; try to keep left on light,

right on dark */

while (1) {

/* if left eye sees black, turn left */

if (left_eye() == 0) veer_left();

/* if right eye sees white, turn right */

else if (right_eye() == 1) veer_right();

/* otherwise, go straight */

else forward();

/* check for touch sensors */

if (left_touch() || right_touch()) break;

}

• Built-in IC functions for measuring elapsed time:
– seconds() function reports the number of seconds since the last system reset, as a floating point

number (avoid floating point operations on Handy Board - they are too slow)

– mseconds() function reports the same quantity as the number of milliseconds since reset, as a long

integer (use mseconds() for timing functions)

12

Copyright Prentice Hall, 2001 23

Exit Conditions

• Keep track of how much time has elapsed

since a subroutine began execution, and take

action at some point in time.

• A long integer variable, timeout, is

declared and initialized with the value of the

current time plus four seconds (4,000

milliseconds, or 4000L)

• Inside the body of the feedback loop, the

current time is compared with the timeout

point; if the current time is later than the

timeout value, the loop exits

• The last statement performs the elapsed time

check, and breaks the loop if too much time

has elapsed. (It would also be possible to put

the timeout check as the condition of the

while loop.)

Timeouts
/* declare and initialize timeout variable */

long timeout= mseconds() + 4000L;

while (1) {

if (left_eye() == 0) veer_left();

else if (right_eye() == 1) veer_right();

else forward();

if (left_touch() || right_touch()) break;

/* check for timeout */

if (mseconds() > timeout) break;

}

Copyright Prentice Hall, 2001 24

Exit Conditions

• In most cases, the higher level control

program should take a special action when

a subroutine exits because of a timeout

rather than the normal conclusion of its

duties.

• Function has a return value that indicates

whether the routine terminated normally

(with a touch sensor press) or abnormally

(because of a timeout)

• Robot’s main program would need to be

modified to take action based upon the

success or lack thereof of the program’s

subroutines.

• At least, though, the timeout technique

allows the master program to have the

opportunity to take corrective action.

Timeouts
/* define exit codes */

int NORMAL= 0;

int TIMEOUT= 1;

int follow_edge_to_wall() {

long timeout= mseconds() + 4000L;

while (1) {

if (left_eye() == 0) veer_left();

else if (right_eye() == 1) veer_right();

else forward();

if (left_touch() || right_touch()) return NORMAL;

if (mseconds() > timeout) return TIMEOUT;

}

}

13

Copyright Prentice Hall, 2001 25

Exit Conditions

• Problem: routine finishes in too little time

• Suppose Groucho is happily traversing

that center median and the opposing robot

is in the way. If circumstances are

fortunate, one of Groucho’s touch sensors

will be triggered.

• Groucho realizes that something unusual

has happened, because from past empirical

observation there is no way that Groucho

could already have reached the far wall.

• The “too-long” timeout has been made

into a program constant (TOO LONG),

along with a new parameter, the “too-

short” timeout (TOO SHORT).

• When the touch sensors are hit, the

elapsed time is checked, and if it is less

than the TOO SHORT amount returns

with the EARLY error result rather than

the NORMAL exit result

Premature Exits /* define exit codes */

int NORMAL= 0;

int TIMEOUT= 1;

int EARLY= 2;

/* sample timing parameters */

long TOO_LONG= 4000L;

long TOO_SHORT= 1500L;

int follow_edge_to_wall() {

long start= mseconds();

long timeout= start + TOO_LONG;

while (1) {

if (left_eye() == 0) veer_left();

else if (right_eye() == 1) veer_right();

else forward();

if (left_touch() || right_touch())

if (mseconds() < (start + TOO_SHORT))

return EARLY;

else return NORMAL;

if (mseconds() > timeout) return TIMEOUT;

}

}

Copyright Prentice Hall, 2001 26

Exit Conditions

• Final piece of the timeout puzzle: While a robot is performing a feedback process like

following the light/dark edge, it is typically shuttling back and forth between the various

modes.

• That is to say, when Groucho is traversing the edge, it is continuously correcting its

movements, one moment veering left, then going straight, then going right, then another

way.

• In the edge-following algorithm, Groucho may stay in the “go straight” mode for a fair

while, but it shouldn’t stay in the “veer left” or “veer right” modes for very long.

• These transitions between the different modes of the feedback loop can be monitored

along with the overall performance.

• Three new timeout parameters are necessary:

– VL_TIME (veer left timeout), VR_TIME (veer right time), and GS_TIME (go straight timeout).

Parameters represent longest time that Groucho may spend continuously in any given state.

• Two new state variables are necessary:

– last_mode, to keep track of the loop’s state the last time through, and last_time, to keep

track of the time the last state began.

• Three new return codes, VL_STUCK, VR_STUCK,and GS_STUCK, are re-used as codes

to represent the states.

Premature Exits

14

Copyright Prentice Hall, 2001 27

Exit Conditions

/* define exit codes */

int NORMAL= 0;

int TIMEOUT= 1;

int EARLY= 2;

int VL_STUCK= 3;

int VR_STUCK= 4;

int GS_STUCK= 5;

/* sample timing

parameters */

long TOO_LONG= 4000L;

long TOO_SHORT= 1500L;

long VL_TIME= 2000L;

long VR_TIME= 2000L;

long GS_TIME= 3000L;

int follow_edge_to_wall()

{

long start= mseconds();

long timeout= start +

TOO_LONG;

int last_mode= 0;

long last_time= 0;

while (1) {

if (left_eye() == 0) {

veer_left();

if (last_mode == VL_STUCK)

if ((mseconds() -

last_time) > VL_TIME)

return VL_STUCK;

else {

last_mode= VL_STUCK;

last_time=

mseconds();

}

}

else if (right_eye() == 1) {

veer_right();

if (last_mode == VR_STUCK)

if ((mseconds() -

last_time) > VR_TIME)

return VR_STUCK;

else {

last_mode= VR_STUCK;

last_time= mseconds();

}

}

Copyright Prentice Hall, 2001 28

Exit Conditions

else {

forward();

if (last_mode == GS_STUCK)

if ((mseconds() - last_time)

> GS_TIME)

return GS_STUCK;

else {

last_mode= GS_STUCK;

last_time= mseconds();

}

}

if (left_touch() ||

right_touch())

if (mseconds() < (start +

TOO_SHORT))

return EARLY;

else return NORMAL;

if (mseconds() > timeout)

return TIMEOUT;

}

}

• Notice sample values for the timeout durations

VL TIME and VR TIME are different than

the value of GS TIME. This is to point toward

one potential problem with this approach:

– what if Groucho tracks the line too

well?

• Possible that it might stay in the “go straight”

state for a long uninterrupted period.

• If a given robot seems to perform very well

when it’s directly centered and going straight,

one would not want the going-straight timeout to

interrupt it from the fine job it’s doing.

• These sort of cases must be determined

experimentally; if necessary, the GS TIME

value can be increased to as large as the EARLY

timeout value to ensure that the robot is allowed

to go straight without being disturbed by the

monitoring software.

15

Copyright Prentice Hall, 2001 29

Exit Conditions

• Question: how to take advantage of knowledge about the performance of feedback loops while

they are running: it is very difficult for most algorithmic controls to know what action to take

upon learning that a problem has occurred.

– Groucho crossing the center median: suppose it is running the latest version of the

follow_edge_to_wall() function, and the function exits with the VL _STUCK error code.

– What has occurred? Perhaps Groucho has run into the opponent robot part of the way across the playing

field, or perhaps Groucho has mistracked the median edge and driven itself into a playing field wall, or

perhaps something else has gone wrong—there is simply no way to exactly determine the situation.

• It is difficult for the algorithmic control program to take the “appropriate” course of action based

on the error result.

• One possibility is that an error condition from a feedback routine could prompt a re-examination

of all other sensors to try to make sense of the situation.

– If Groucho’s touch sensors went off only part way across the playing field, in the context of a contest

situation, it could be because the opponent robot got in the way. If Groucho had any other sensors that

could be used to detect the opponent robot, now would be the time to check them.

• Even if it is difficult to design an appropriate reaction to each various situation that might be

detected by the timeout methods, it is often possible to figure out a single recovery behavior that

would suffice for many circumstances.

– In Groucho’s case, heading downhill until hitting the bottom wall and then proceeding with the cornering

routine should allow Groucho to recover from a variety of problems.

Taking Action

Copyright Prentice Hall, 2001 30

Exit Conditions

1. Timeout detection. For each of the following Groucho subroutines, decide upon suitable methods

for determining timeout conditions, and re-write the functions to implement them. Which one

or which combination of the techniques—simple timeout, premature timeout, or feedback loop

monitoring—are most appropriate for each subroutine?

– inside_corner()

– drive_to_top()

– align_with_edge()

– drive_to_bottom()

2. Corrective action. For each of previous four subroutines, postulate reasons that the routine could

fail with a timeout, how your routines would detect the failures, and possible corrective actions.

3. Putting it together. Re-write the main Groucho program, which previously was just a loop running

the subroutines in order, to choose the appropriate corrective action based on the error codes reported

by the modified subroutines.

Exercise: Groucho with Timeouts

