

*Apresentação baseada nos slides de Dra. Linda Bushnell.

SUPERAD SOMPUTAÇÃO

Introdução

- Aquisição de informações do ambiente
 - Mais conhecimento → Melhores decisões
- Diferentes tipos de sensores
 - Qual tarefa o robô deve resolver?
 - Quanto posso pagar?
 - Qualidade
 - Outras características (Peso, tamanho, ...)

■ 🕺 <u>m</u>

Introdução à Robótica - Sensores

Introdução

Classificação

- Proprioceptivos (internos)
 - Mede valores internos aos sistema (robô)
 - Ex: Velocidade do motor, orientação, bateria, ...
- Exteroceptivos (externos)
 - Mede valores externos ao sistema (ambiente)
 - Ex: Distância de objetos, intensidade da luz, ...

Introdução à Robótica - Sensore

5

Introdução

Classificação

- Passivos
 - Baseados em energia vinda do ambiente
 - Ex: Câmeras, bússolas, bumpers, ...
- Ativos
 - Emitem a própria energia e medem o resultado
 - Melhor desempenho, influenciam no ambiente
 - Ex: Lasers, radares, ...

Introdução à Robótica - Sensores

Processamento Digital de Sinais

- Maioria dos fenômenos é contínuo
 - Geram sinais (medições) contínuos
- Para utilizá-lo é necessário uma conversão
 - Analógico → Digital
- Principais características
 - Amostragem
 - Quantização

 \blacksquare \bowtie m

trodução à Robótica - Sensores

7

Processamento Digital de Sinais

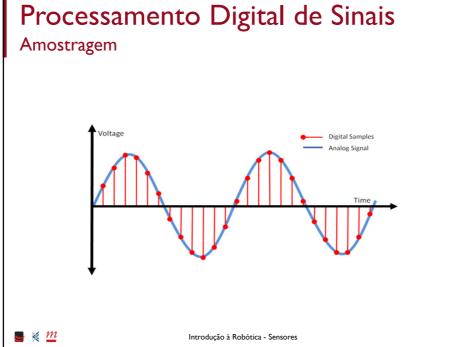
- Conversão implica em perda de informação
 - Qual informação pode ser descartada?

- Intervalo entre os valores (amostragem)
- Transformação do valor (quantização)

 \blacksquare \bowtie m

Introdução à Robótica - Sensores

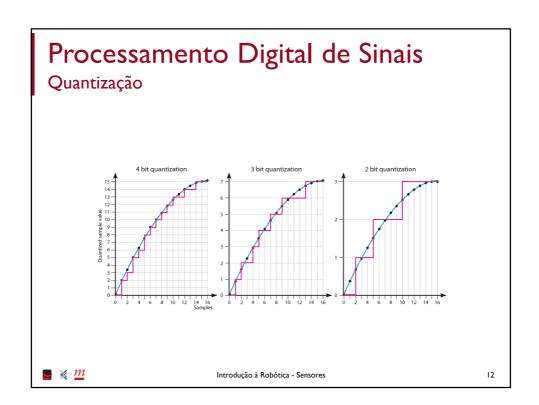
В


Processamento Digital de Sinais

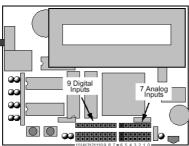
Amostragem

- Processo no qual são armazenados alguns valores de um sinal contínuo em instantes discretos de tempo
 - Período de amostragem
- Similar ao que ocorre em um vídeo
 - Fotos das cenas em intervalos regulares
 - Sensação de movimento

 \blacksquare $\not\in$ m


Introdução à Robótica - Sensores

Processamento Digital de Sinais Quantização


- Valores da função também são contínuos
 - Apesar de amostrados de forma discreta
- Discretização do sinal na amplitude
 - Arredondamento → Perda de informação
- Processo realizado por um quantizador
 - Software/Hardware

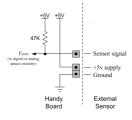
📑 🤘 💯 Introdução à Robótica - Sensores 11

Interface de Sensoriamento

Handyboard

- Entradas analógicas
 - Portas 0 6
- Entradas digitais
 - Portas 7 15
- Cada porta fornece 3 sinais Linha de sinal
 - Tensão de +5V

 - Terra
- OBS: Não é todo sensor que demanda +5V!


Introdução à Robótica - Sensores

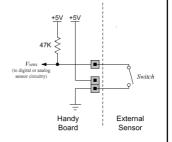
14

Interface de Sensoriamento

Handyboard – Circuito de entrada

- Linha de sinal em +5V
 - Utiliza um resistor de $47 \mathrm{K}\Omega$
 - Valor padrão sem sensores conectados
- Metade do divisor de tensão (com o sensor)

 \blacksquare \bowtie m


Introdução à Robótica - Sensores

Interface de Sensoriamento

Handyboard – Entradas digitais

- Interpreta a tensão de cada sensor (V_{Sens})
 - V_{sens} > 2.5V → Valor lógico I (true)
 - $V_{sens} < 2.5V \rightarrow Valor lógico 0 (false)$
- Exemplo de um switch
 - Conexão entre LS e GND

switch state	V _{mma} voltage	hardware reading	digital() result
open - not pressed	5 volts	1	0 – false
closed - pressed	0 volts	0	1 – true

 \blacksquare \bowtie m

ntrodução à Robótica - Sensores

15

Interface de Sensoriamento

Handyboard – Entradas digitais

- Exemplo de um switch
 - Solto: Circuito aberto, não existe conexão entre LS e GND. Valor padrão de +5V ou lógico I (T).
 - Pressionado: Conexão do LS com o GND (0V).
 É feita uma leitura do valor lógico 0 (F).
- A leitura é invertida via software
 - digital()


M

ntrodução à Robótica - Sensore

Interface de Sensoriamento

Handyboard – Entradas analógicas

- Medem valores de variação contínua
 - O valor de V_{Sens} (0V-5V) é convertido (A/D) para um número de 8 bits (0-255)
- Exemplo de um LDR
 - Fotoresistor
 - Conexão entre LS e GND
 - Resistência variável
 - Balanceada com a fixa de 47ΚΩ

 \blacksquare \bowtie m

trodução à Robótica - Sensores

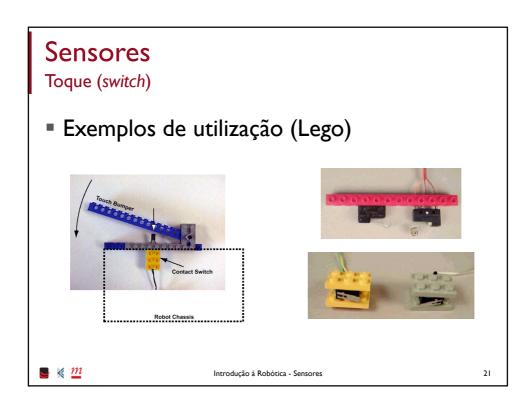
17

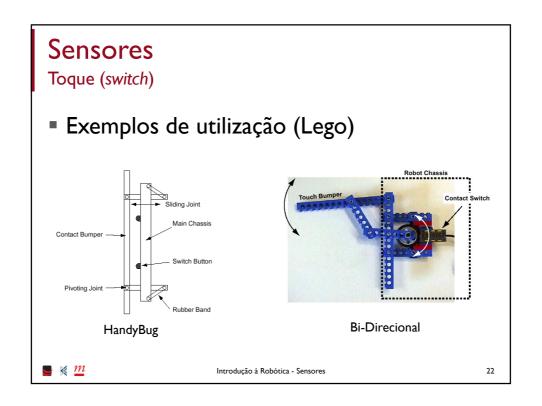
Interface de Sensoriamento

Handyboard – Entradas analógicas

- Divisor de tensão (proporcional à razão)
 - R = 47KΩ, $V_{sens} = 2.5V$
 - $R \ll 47K\Omega$, $V_{sens} \cong GND$
 - $R \gg 47 K\Omega$, $V_{sens} \cong +5 V$

 \blacksquare \bowtie m


Introdução à Robótica - Sensores


Toque (switch)

- Indicam se ocorreu um contato físico
 - Ex: O bumper pode ser utilizado para alterar a direção de movimento após uma colisão
- Sensoriamento limitado
 - Maior quantidade → Mais informações
 - É melhor prevenir do que remediar!
- Pode ser utilizado como odometria

📑 🤘 💯 Introdução à Robótica - Sensores 19

Sensores Toque (switch) • Exemplos de conexão

LDR (Light-Dependent Resistor)

- Mede a intensidade da luz no ambiente
 - Valores pequenos com muita luz
 - Resistência pequena ($V_{sens} \cong 0V$)
 - Valores grandes com pouca luz
 - Resistência grande ($V_{sens} \cong +5V$)

Introdução à Robótica - Sensores

2

Sensores

LDR (Light-Dependent Resistor)

- Utilizando um sensor
 - Proteção permite uma detecção direcionada


```
while (1) {
    printf("%d\n", analog(0));
    msleep(100L);
}
```

int light(int port) {
 return 255 - analog(port);
}

M

Introdução à Robótica - Sensores

LDR (Light-Dependent Resistor)

- LDR Diferencial
 - Permite fazer uma interpretação de qual lado está recebendo mais luz, e de quanto mais

$$V_{
m out} = rac{5R_1}{R_1 + R_2}$$
 $V_{
m out} = rac{1}{R_1 + R_2}$
 $V_{
m out} = rac{1}{R_{
m photos}}$
 $V_{
m out} = rac{1}{R_{
m photos}}$
 $V_{
m out} = rac{1}{R_{
m photos}}$
 $V_{
m out} = rac{1}{R_{
m photos}}$

Introdução à Robótica - Sensores

25

Sensores

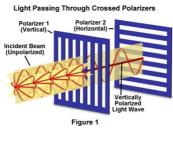
LDR (Light-Dependent Resistor)

- LDR Diferencial
 - $R_2 = R_1$, $V_{out} = 2.5V$
 - $R_2 \ll R_1$, $V_{\text{out}} \cong +5V$
 - Mais luz em R₂
 - $R_2 \gg R_1$, $V_{\text{out}} \cong \text{gnd}$
- Considerações
 - lacktriangle Utilizar LDRs com $R\cong 10\mathrm{K}\Omega$
 - Barreira: Emitir sombra na direção contrária

Optically Shielding "Nose

🌠 🎹 Introdução à Robótica - S

LDR (Light-Dependent Resistor)

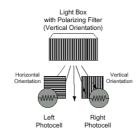

Introdução à Robótica - Sensores

Sensores

 $\mathbf{R} \not \mathbf{M}$

LDR (Light-Dependent Resistor)

- Luz polarizada
 - Possui apenas uma "direção de movimento"
 - Geralmente é obtida utilizando-se um filtro



 \blacksquare \bowtie m

Introdução à Robótica - Sensores

LDR (Light-Dependent Resistor)

- LDR Diferencial Polarizado
 - Pode ser utilizado para localização
- Dado uma fonte polarizada
 - A intensidade medida é igual
 - LDR da esquerda mede
 - LDR da direita mede

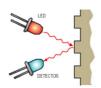
 $\mathbf{R} \not \in \mathbf{m}$

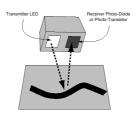
Introdução à Robótica - Sensores

29

Sensores

Óptico-Reflexivo


- Sensor ativo
- Feixe de luz emitido pelo sensor é refletido e captado por um receptor também no sensor
- De acordo com a refletância da superfície, mais ou menos luz é refletida de volta
- Essa quantidade de luz é medida e informada


 \blacksquare \bowtie m

Introdução à Robótica - Sensores

Óptico-Reflexivo

- Emissor
 - LED infravermelho
- Receptor
 - Fotodiodo
 - Fototransistor

 \blacksquare \bowtie m

ntrodução à Robótica - Sensores

31

Sensores

Óptico-Reflexivo

- Circuitos separados
 - Emissor/Receptor
- Emissor
 - Conectado a +5V
 - Resistor entre $220\Omega 470\Omega$
- Receptor
 - Conectado ao LS e GND, como um LDR

 \blacksquare \bowtie m

Introdução à Robótica - Sensores

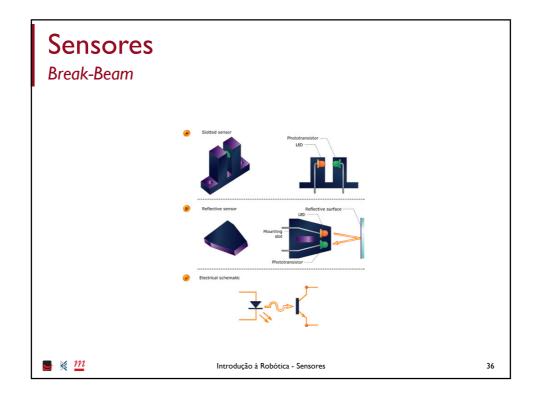
Óptico-Reflexivo

- Principais aplicações
 - Detecção de objetos
 - Ex: Distância para uma parede
 - Detecção de características
 - Ex: Uma faixa que difere do restante da superfície

 \blacksquare \bowtie m

Introdução à Robótica - Sensore

33


Sensores

Óptico-Reflexivo vs. LDR

- LDR
 - Fáceis de trabalhar (resistor)
 - Tempo de resposta mais lento
- Óptico-Reflexivo
 - Mais sensível a pequenas variações
 - Tempo de resposta mais rápido

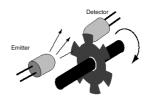
Introdução à Robótica - Sensores

Sensores Break-Beam Sensor ativo Emissor/Receptor direcionados um ao outro Detecta se o feixe de luz foi interrompido Introdução à Robótica - Sensores

Break-Beam

- Não necessariamente um sensor fechado
 - Qualquer par de Emissor/Receptor
 - Ex: LED e Fotodiodo/Fototransistor

 \blacksquare \bowtie m


Introdução à Robótica - Sensores

37

Sensores

Break-Beam

- Shaft-Encoding
 - Medir a variação (rotação) do eixo da roda
- Velocidade
 - Quão rápido as rodas estão girando
- Odômetro
 - Número total de rotações

 \blacksquare \bowtie m

Introdução à Robótica - Sensores