
Planning and Navigation

Where am I going? How do I get there?

© R. Siegwart, I. Nourbakhsh

Competencies for Navigation I

- Cognition / Reasoning:
 - ▶ is the ability to decide what actions are required to achieve a certain goal in a given situation (belief state).
 - decisions ranging from what path to take to what information on the environment to use.
- Today's industrial robots can operate without any cognition (reasoning) because their environment is static and very structured.
- In mobile robotics, cognition and reasoning is primarily of geometric nature, such as picking safe path or determining where to go next.
 - ➤ already been largely explored in literature for cases in which complete information about the current situation and the environment exists (e.g. sales man problem).

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 6

6.2

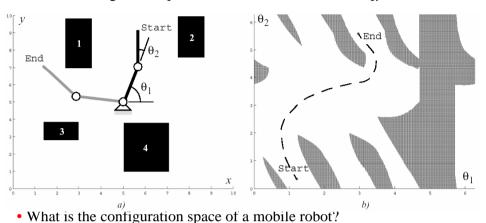
Competencies for Navigation II

- However, in mobile robotics the knowledge of about the environment and situation is usually only partially known and is uncertain.
 - > makes the task much more difficult
 - requires multiple tasks running in parallel, some for planning (global), some to guarantee "survival of the robot".
- Robot control can usually be decomposed in various behaviors or functions
 - ▶ e.g. wall following, localization, path generation or obstacle avoidance.
- In this chapter we are concerned with path planning and navigation, except the low lever motion control and localization.
- We can generally distinguish between (*global*) path planning and (*local*) obstacle avoidance.

Autonomous Mobile Robots, Chapter 6

6.2.1

Global Path Planing

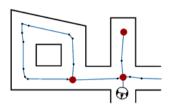

- Assumption: there exists a good enough map of the environment for navigation.
 - ➤ Topological or metric or a mixture between both.
- First step:
 - ➤ Representation of the environment by a road-map (graph), cells or a potential field. The resulting discrete locations or cells allow then to use standard planning algorithms.
- Examples:
 - Visibility Graph
 - Voronoi Diagram
 - ➤ Cell Decomposition -> Connectivity Graph
 - > Potential Field

Autonomous Mobile Robots, Chapter 6

6.2.1

Path Planning: Configuration Space

• State or configuration q can be described with k values q_i

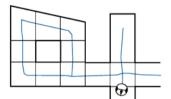


© R. Siegwart, I. Nourbakhsh

Path Planning Overview

1. Road Map, Graph construction

Identify a set of routes within the free space


- Where to put the nodes?
- Topology-based:
 - > at distinctive locations

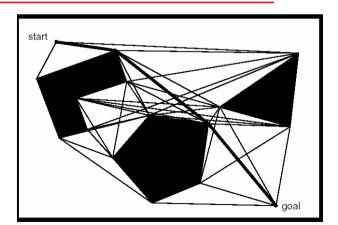
where features disappear or get visible

2. Cell decomposition

Discriminate between free and occupied cells

- Where to put the cell boundaries?
- Topology- and metric-based:
 - where features disappear or get visible

3. Potential Field

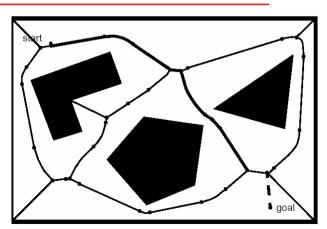

Imposing a mathematical function over the space

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 6

6.2.1

Road-Map Path Planning: Visibility Graph

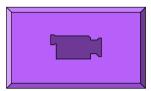


- Shortest path length
- Grow obstacles to avoid collisions

Autonomous Mobile Robots, Chapter 6

6.2.1

Road-Map Path Planning: Voronoi Diagram



- Easy executable: Maximize the sensor readings
- Works also for map-building: Move on the Voronoi edges

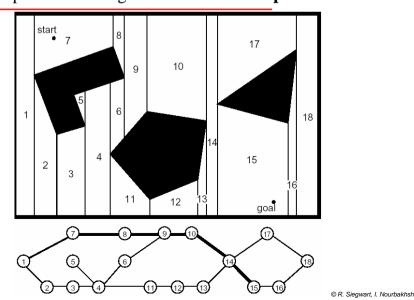
Autonomous Mobile Robots, Chapter 6

6.2.1

Road-Map Path Planning: Voronoi, Sysquake Demo

© R. Siegwart, I. Nourbakhsh

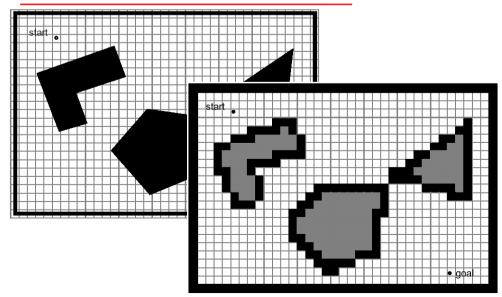
Road-Map Path Planning: Cell Decomposition


- Divide space into simple, connected regions called cells
- Determine which open sells are adjacent and construct a connectivity graph
- Find cells in which the initial and goal configuration (state) lie and search for a path in the connectivity graph to join them.
- From the sequence of cells found with an appropriate search algorithm, compute a path within each cell.
 - > e.g. passing through the midpoints of cell boundaries or by sequence of wall following movements.

© R. Siegwart, I. Nourbakhsh

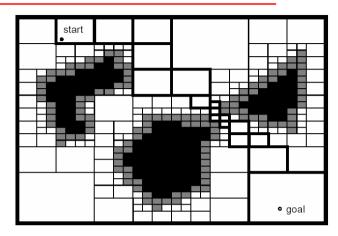
Autonomous Mobile Robots, Chapter 6

6.2.1


Road-Map Path Planning: Exact Cell Decomposition

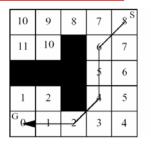
Autonomous Mobile Robots, Chapter 6

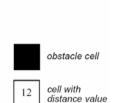
6.2.1


Road-Map Path Planning: Approximate Cell Decomposition

Autonomous Mobile Robots, Chapter 6

6.2.1


Road-Map Path Planning: Adaptive Cell Decomposition



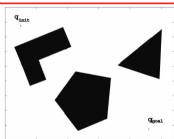
© R. Siegwart, I. Nourbakhsh

Road-Map Path Planning: Path / Graph Search Strategies

• Wavefront Expansion NF1 (see also later)

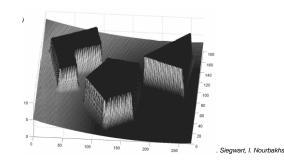
• Depth-First Search

• Breadth-First Search


• Greedy search and A*

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 6


6.2.1

Potential Field Path Planning

385 Qfnits
340 200 200 200 200 200

- Robot is treated as a *point under the influence* of an artificial potential field.
 - ➤ Generated robot movement is similar to a ball rolling down the hill
 - ➤ Goal generates attractive force
 - ➤ Obstacle are repulsive forces

Autonomous Mobile Robots, Chapter 6

6.2.1

Potential Field Path Planning: Potential Field Generation

- Generation of potential field function U(q)
 - attracting (goal) and repulsing (obstacle) fields
 - > summing up the fields
 - ➤ functions must be differentiable
- Generate artificial force field F(q) $F(q) = -\nabla U(q) = -\nabla U_{att}(q) \nabla U_{rep}(q) = \begin{bmatrix} \frac{\partial U}{\partial x} \\ \frac{\partial U}{\partial y} \end{bmatrix}$
- Set robot speed (v_x, v_y) proportional to the force F(q) generated by the field
 - > the force field drives the robot to the goal
 - if robot is assumed to be a point mass

Potential Field Path Planning: Attractive Potential Field

• Parabolic function representing the Euclidean distance $\|q-q_{goal}\|$ to the goal

$$U_{att}(q) = \frac{1}{2}k_{att} \cdot \rho_{goal}^2(q)$$

• Attracting force converges linearly towards 0 (goal)

$$\begin{split} F_{att}(q) &= -\nabla U_{att}(q) \\ &= -k_{att} \cdot \rho_{goal}(q) \nabla \rho_{goal}(q) \\ &= -k_{att} \cdot (q - q_{goal}) \end{split}$$

© R. Siegwart, I. Nourbakhsh

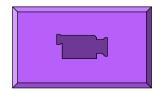
Potential Field Path Planning: Repulsing Potential Field

- Should generate a barrier around all the obstacle
 - > strong if close to the obstacle
 - not influence if fare from the obstacle

$$U_{rep}(q) = \begin{cases} \frac{1}{2} k_{rep} \left(\frac{1}{\rho(q)} - \frac{1}{\rho_0} \right)^2 & \text{if } \rho(q) \le \rho_0 \\ 0 & \text{if } \rho(q) \ge \rho_0 \end{cases}$$

- $\triangleright \rho(q)$: minimum distance to the object
- Field is positive or zero and tends to infinity as q gets closer to the object

$$F_{rep}(q) = -\nabla U_{rep}(q) = \begin{cases} k_{rep} \left(\frac{1}{\rho(q)} - \frac{1}{\rho_0}\right) \frac{1}{\rho^2(q)} \frac{q - q_{goal}}{\rho(q)} & \text{if } \rho(q) \le \rho_0 \\ 0 & \text{if } \rho(q) \ge \rho_0 \end{cases}$$

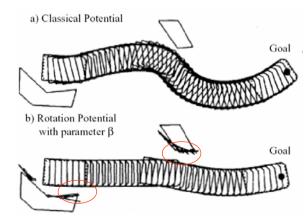

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 6

6.2.1

Potential Field Path Planning: Sysquake Demo

- Notes:
 - > Local minima problem exists
 - problem is getting more complex if the robot is not considered as a point mass
 - ➤ If objects are convex there exists situations where several minimal distances exist → can result in oscillations


Autonomous Mobile Robots, Chapter 6

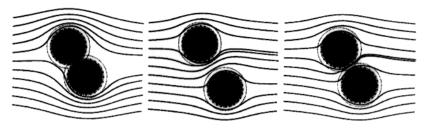
6.2.1

Potential Field Path Planning: Extended Potential Field Method

Khatib and Chatila

- Additionally a *rotation potential field* and a *task potential field* in introduced
- Rotation potential field
 - force is also a function of robots orientation to the obstacle
- Task potential field
 - Filters out the obstacles that should not influence the robots movements, i.e. only the obstacles in the sector Z in front of the robot are considered

Potential Field Path Planning: Potential Field using a Dyn. Model


Monatana et at.

- Forces in the polar plane
 - > no time consuming transformations
- · Robot modeled thoroughly
 - > potential field forces directly acting on the model
 - > filters the movement -> smooth
- Local minima
 - > set a new goal point

© R. Siegwart, I. Nourbakhsh

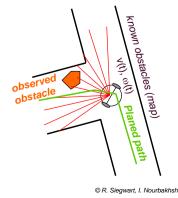
Potential Field Path Planning: Using Harmonic Potentials

- Hydrodynamics analogy
 - > robot is moving similar to a fluid particle following its stream
- Ensures that there are no local minima

- Note:
 - > Complicated, only simulation shown

© R. Siegwart, I. Nourbakhsh

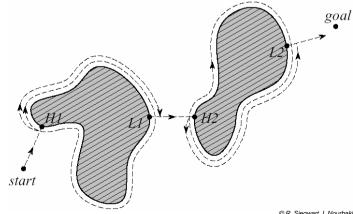
Autonomous Mobile Robots, Chapter 6


6.2.2

Obstacle Avoidance (Local Path Planning)

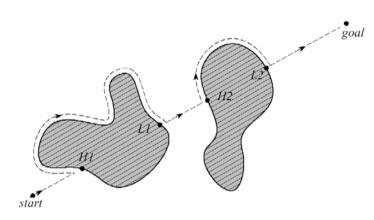
- The goal of the obstacle avoidance algorithms is to avoid collisions with obstacles
- It is usually based on *local map*
- Often implemented as a more or less *independent task*
- However, efficient obstacle avoidance should be optimal with respect to
 - > the overall goal
 - > the actual speed and kinematics of the robot
 - the on boards sensors
 - > the actual and future risk of collision

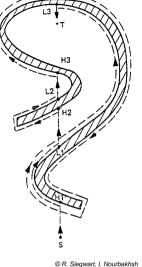
• Example: Alice



Autonomous Mobile Robots, Chapter 6

Obstacle Avoidance: Bug1

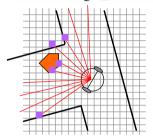

- Following along the obstacle to avoid it
- Each encountered obstacle is once fully circled before it is left at the point closest to the goal



© R. Siegwart, I. Nourbakhsh

Obstacle Avoidance: Bug2

- Following the obstacle always on the left or right side
- ➤ Leaving the obstacle if the direct connection between start and goal is crossed



Obstacle Avoidance: Vector Field Histogram (VFH)

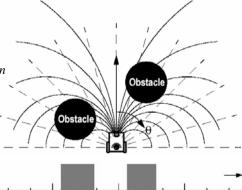
Borenstein et al.

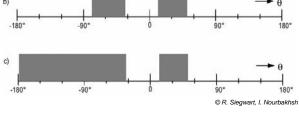
- Environment represented in a grid (2 DOF)
 - > cell values equivalent to the probability that there is an obstacle
- Reduction in different steps to a 1 DOF histogram
 - > calculation of steering direction
 - > all openings for the robot to pass are found
 - the one with lowest cost function G is selected

 $G = a \cdot \text{target_direction} + b \cdot \text{wheel_orientation} + c \cdot \text{previous_direction}$

Autonomous Mobile Robots, Chapter 6

6.2.2


Borenstein et al.


Obstacle Avoidance: Vector Field Histogram + (VFH+)

• Accounts also in a very simplified way for the moving trajectories (dynamics)

robot moving on arcs

 obstacles blocking a given direction also blocks all the trajectories (arcs) going through this direction

Autonomous Mobile Robots, Chapter 6

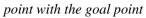
6.2.2

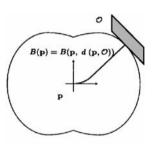
Obstacle Avoidance: Video VFH

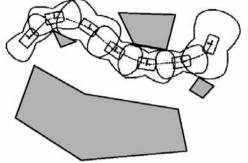
Borenstein et al.

• Notes:

- Limitation if narrow areas (e.g. doors) have to be passed
- Local minimum might not be avoided
- Reaching of the goal can not be guaranteed
- Dynamics of the robot not really considered

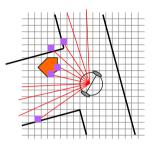

© R. Siegwart, I. Nourbakhsh

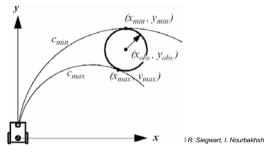

Obstacle Avoidance: The Bubble Band Concept


Khatib and Chatila

- Bubble = Maximum free space which can be reached without any risk of collision
 - > generated using the distance to the object and a simplified model of the robot

bubbles are used to form a band of bubbles which connects the start




© R. Siegwart, I. Nourbakhsh

Obstacle Avoidance: Basic Curvature Velocity Methods (CVM)

Simmons et al.

- Adding *physical constraints* from the robot and the environment on the *velocity space* (v, ω) of the robot
 - \triangleright Assumption that robot is traveling on arcs (c= ω/v)
 - > Acceleration constraints:
 - > Obstacle constraints: Obstacles are transformed in velocity space
 - ➤ Objective function to select the optimal speed

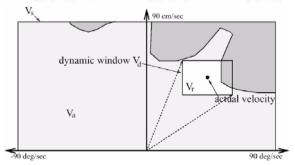
Autonomous Mobile Robots, Chapter 6

6.2.2

Obstacle Avoidance: Lane Curvature Velocity Methods (CVM)

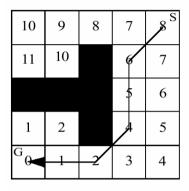
 $Simmons\ et\ al.$

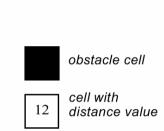
- Improvement of basic CVM
 - ➤ Not only arcs are considered
 - lanes are calculated trading off lane length and width to the closest obstacles
 - ➤ Lane with best properties is chosen using an objective function
- Note:
 - > Better performance to pass narrow areas (e.g. doors)
 - > Problem with local minima persists


Autonomous Mobile Robots, Chapter 6

6.2.2

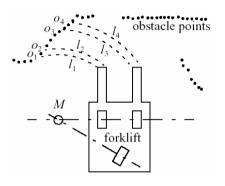
Obstacle Avoidance: Dynamic Window Approach


Fox and Burgard, Brock and Khatib


- The kinematics of the robot is considered by searching a well chosen velocity space
 - ➤ velocity space -> some sort of configuration space
 - robot is assumed to move on arcs
 - > ensures that the robot comes to stop before hitting an obstacle
 - > objective function is chosen to select the optimal velocity
- $O = a \cdot heading(v, \omega) + b \cdot velocity(v, \omega) + c \cdot dist(v, \omega)$

Obstacle Avoidance: Global Dynamic Window Approach

- Global approach:
 - ➤ This is done by adding a minima-free function named NF1 (wave-propagation) to the objective function O presented above.
 - ➤ Occupancy grid is updated from range measurements



© R. Siegwart, I. Nourbakhsh

Obstacle Avoidance: The Schlegel Approach

- Some sort of a variation of the dynamic window approch
 - > takes into account the shape of the robot
 - Cartesian grid and motion of circular arcs
 - > NF1 planner
 - real time performance achieved by use of precalculated table

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 6

6.2.2

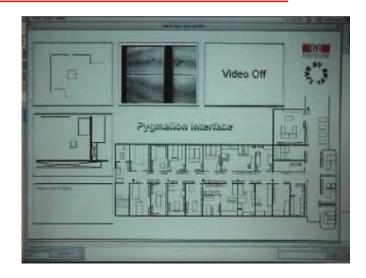
Obstacle Avoidance: The EPFL-ASL approach

Intermediate goal

- Dynamic window approach with global path planing
 - ➤ Global path generated in advance
 - > Path adapted if obstacles are encountered
 - dynamic window considering also the shape of the robot
 - > real-time because only max speed is calculated
- Selection (Objective) Function:

 $Max(a \cdot speed + b \cdot dist + c \cdot goal_heading)$

- \triangleright speed = v / v_{max}
- $\rightarrow dist = L / L_{max}$
- \triangleright goal_heading = 1- $(\alpha \omega T)/\pi$
- · Matlab-Demo
 - > start Matlab
 - cd demoJan (or cd E:\demo\demoJan)
 - demoX



© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 6

6.2.2

Obstacle Avoidance: The EPFL-ASL approach

Tangent Bug

[82]

point

local

local tangent

graph

range

cases, robust

Bug2 [101, 102]

point

local

tactile

inefficient,

Bug1 [101, 102]

point

local

tactile

very inefficient,

Bubble band

Elastic band

C-space

global

polygonal

required

various

VFH*

[149]

circle

basic

simplistic

essentially loca

histogram grid

sonars

nonholonomic

(GuideCane)

6 ... 242 ms 66 MHz, 486 PC

fewer local

minima

Bubble band

C-space

exact

local

polygonal

required

various

Vector Field Histogram (VFH)

[92, 150]

circle

basic

simplistic

local

histogram grid

sonars

nonholonomic

(GuideCane)

66 MHz, 486 PC

local minima

simplistic

local

histogram grid

range

synchro-drive

(hexagonal)

20 MHz, 386 AT

local minima,

scillating trajectories

shape

kinematics

dynamics

local map

global map

path planner

tested

architecture

remarks

© R. Siegwart, I. Nourbakhsh

view

Obstacle Avoidance: Other approaches

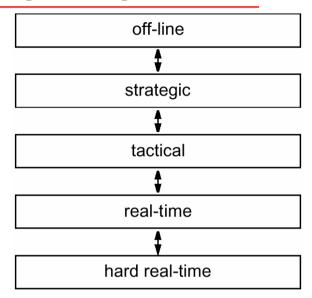
- Behavior based
 - ► difficult to introduce a precise task
 - > reachability of goal not provable
- Fuzzy, Neuro-Fuzzy
 - > learning required
 - difficult to generalize

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 6

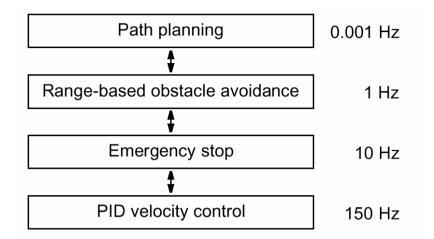
		Other			3	
Gradient method [89]	Global nearness diagram [110]	Nearness diagram [107, 108]	ASL approach [122]	Schlegel [128]	method	
circle	circle (but general formulation)	circle (but general formulation)	polygon	polygon	shape	mo
exact	(holonomic)	(holonomic)	exact	exact	kinematics	model fidelity
basic			basic	basic	dynamics	lity
global	global	local	local	global	global view	
	grid		grid		local map	othe
local perceptual space	NF1			grid	global map	other requisites
fused			graph (topological), NF1	wavefront	path glanner	
180° FOV distance sensor	180° FOV SCK laser scanner	180° FOV SCK laser scanner	2x 180° FOV SCK laser scanner	360° FOV laser scanner	sensors	
nonholonomic (approx. circle)	holonomic (circular)	holonomic (circular)	differential drive (octagonal, rectangular)	synchrodrive (circular), tricycle (forklift)	tested robots	
100 ms (core algorithm: 10 ms)			100 ms (core algorithm: 22 ms)		cycle time	регтогтапсе
266 MHz, Pentium			380 MHz, G3		architecture	mance
		local minima	turning into corridors	allows shape change	remarks	

© R. Siegwart, I. Nourbakhsh


Autonomous Mobile Robots, Chapter 6

6.2.2

Dynamic window		Curvat	3			
Global dynamic Dynamic window window [44] approach [69]		Lane curvature method [87]	Curvature velocity method [135]	method		
circle	circle	circle	circle	shape	3	
(holonomic) exact		exact	exact	kinematics	model fidelity	
basic	basic	basic	basic	dynamics		
global	local	local	local	view		
	obstacle line field	histogram grid	histogram grid	local map	othe	
C-space grid				global map	other requisites	
NF1				path planner	sites	
180° FOV SCK laser scanner	24 sonars ring, 56 infrared ring, stereo camera	24 sonars ring, 30° FOV laser	24 sonars ring, 30° FOV laser	sensors		
holonomic (circular)	synchro-drive (circular)	synchro-drive (circular)	synchro-drive (circular)	tested robots		
6.7 ms	250 ms	125 ms	125 ms	cycle time		
450 MHz, PC 486 PC		200 MHz, Pentium	66 MHz, 486 PC	architecture	performance	
turning into corridors local minima		local minima	local minima, turning into corridors	remarks		


© R. Siegwart, I. Nourbakhsh

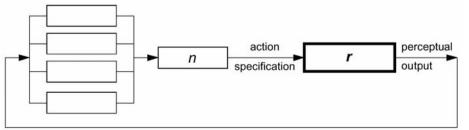
Generic temporal decomposition

© R. Siegwart, I. Nourbakhsh

4-level temporal decomposition


© R. Siegwart, I. Nourbakhsh

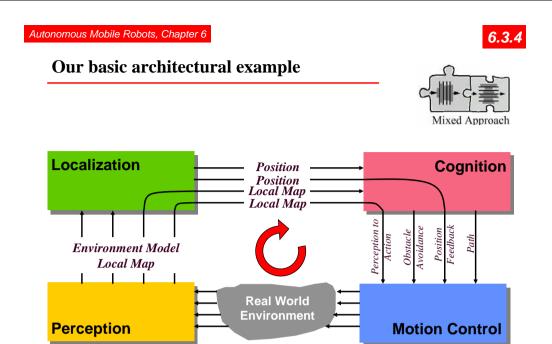
Autonomous Mobile Robots, Chapter 6


6.3.3

Control decomposition

• Pure serial decomposition

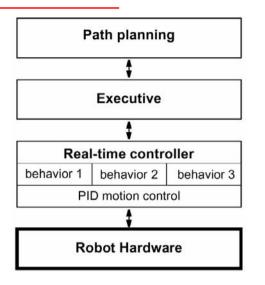
• Pure parallel decomposition


© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 6

6.3.4

Sample Environment

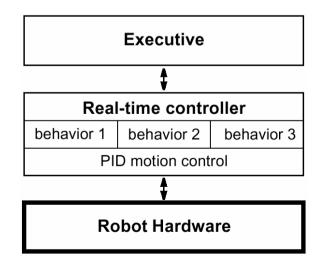


Autonomous Mobile Robots, Chapter 6

6.3.4

General Tiered Architecture

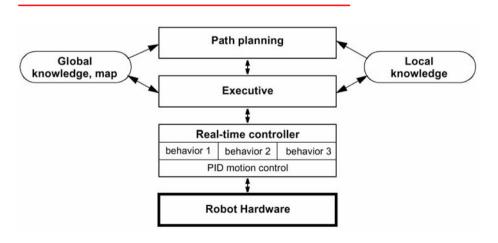
- Executive Layer
 - activation of behaviors
 - > failure recognition
 - re-initiating the planner


© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 6

6.3.4

© R. Siegwart, I. Nourbakhsh


A Tow-Tiered Architecture for Off-Line Planning

Autonomous Mobile Robots, Chapter 6

6.3.4

A Three-Tiered Episodic Planning Architecture.

• Planner is triggered when needed: e.g. blockage, failure

Camera

Driver

Laser

Driver

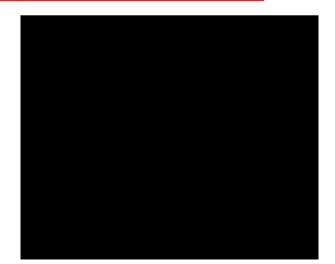
Odometry

Driver

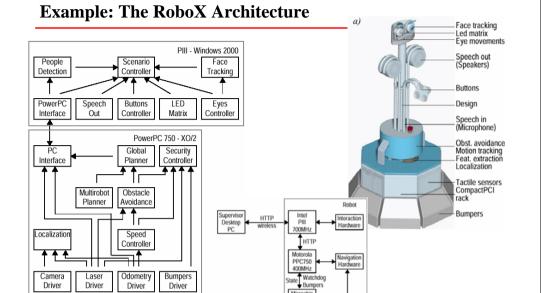
Driver

© R. Siegwart, I. Nourbakhsh

An integrated planning and execution architecture


• All integrated, no temporal between planner and executive layer

© R. Siegwart, I. Nourbakhsh


Autonomous Mobile Robots, Chapter 6

6.3.4

Example: RoboX @ EXPO.02

© R. Siegwart, I. Nourbakhsh

PIC Security action