Localization and Map Building

- Noise and aliasing; odometric position estimation
- To localize or not to localize
- Belief representation
- Map representation
- Probabilistic map-based localization
- · Other examples of localization system
- Autonomous map building

Localization, Where am I?

Autonomous Mobile Robots, Chapter 5

5.2

Challenges of Localization

- Knowing the absolute position (e.g. GPS) is not sufficient
- Localization in human-scale in relation with environment
- Planing in the *Cognition* step requires more than only position as input
- Perception and motion plays an important role
 - > Sensor noise
 - > Sensor aliasing
 - > Effector noise
 - > Odometric position estimation

Autonomous Mobile Robots, Chapter 5

5.2.1

© R. Siegwart, I. Nourbakhsh

Sensor Noise

- Sensor noise in mainly influenced by environment e.g. surface, illumination ...
- or by the measurement principle itself e.g. interference between ultrasonic sensors
- Sensor noise drastically reduces the useful information of sensor readings. The solution is:
 - > to take multiple reading into account
 - > employ temporal and/or multi-sensor fusion

Sensor Aliasing

- In robots, non-uniqueness of sensors readings is the norm
- Even with multiple sensors, there is a many-to-one mapping from environmental states to robot's perceptual inputs
- Therefore the amount of information perceived by the sensors is generally insufficient to identify the robot's position from a single reading
 - ➤ Robot's localization is usually based on a series of readings
 - > Sufficient information is recovered by the robot over time

© R. Siegwart, I. Nourbakhsh

Effector Noise: Odometry, Dead Reckoning

- Odometry and dead reckoning:
 Position update is based on proprioceptive sensors
 - ➤ Odometry: wheel sensors only
 - ➤ Dead reckoning: also heading sensors
- The movement of the robot, sensed with wheel encoders and/or heading sensors is integrated to the position.
 - ➤ Pros: Straight forward, easy
 - Cons: Errors are integrated -> unbound
- Using additional heading sensors (e.g. gyroscope) might help to reduce the cumulated errors, but the main problems remain the same.

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

5.2.3

Odometry: Error sources

deterministic (systematic)

non-deterministic (non-systematic)

- by deterministic errors can be eliminated by proper calibration of the system.
- > non-deterministic errors have to be described by error models and will always leading to uncertain position estimate.
- Major Error Sources:
 - Limited resolution during integration (time increments, measurement resolution ...)
 - Misalignment of the wheels (deterministic)
 - Unequal wheel diameter (deterministic)
 - > Variation in the contact point of the wheel
 - ➤ Unequal floor contact (slipping, not planar ...)

> ...

Autonomous Mobile Robots, Chapter 5

5.2.3

Odometry: Classification of Integration Errors

- Range error: integrated path length (distance) of the robots movement
 - sum of the wheel movements
- Turn error: similar to range error, but for turns
 - ➤ difference of the wheel motions
- Drift error: difference in the error of the wheels leads to an error in the robots angular orientation

Over long periods of time, turn and drift errors far outweigh range errors!

 \triangleright Consider moving forward on a straight line along the x axis. The error in the y-position introduced by a move of d meters will have a component of $d\sin\Delta\theta$, which can be quite large as the angular error $\Delta\theta$ grows.

Odometry: The Differential Drive Robot (1)

$$p = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} \qquad p' = p + \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta \theta \end{bmatrix}$$

© R Siegwart I Nourhakhsh

Odometry: The Differential Drive Robot (2)

Kinematics

$$\Delta x = \Delta s \cos(\theta + \Delta \theta / 2)$$

$$\Delta y = \Delta s \sin(\theta + \Delta \theta / 2)$$

$$\Delta\theta = \frac{\Delta s_r - \Delta s_l}{b}$$

$$\Delta s = \frac{\Delta s_r + \Delta s_l}{2}$$

$$\Delta s = \frac{\Delta s_r + \Delta s_l}{2}$$

$$p' = f(x, y, \theta, \Delta s_r, \Delta s_l) = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} + \begin{bmatrix} \frac{\Delta s_r + \Delta s_l}{2} \cos\left(\theta + \frac{\Delta s_r - \Delta s_l}{2b}\right) \\ \frac{\Delta s_r + \Delta s_l}{2} \sin\left(\theta + \frac{\Delta s_r - \Delta s_l}{2b}\right) \\ \frac{\Delta s_r - \Delta s_l}{b} \end{bmatrix}$$

$$\frac{\Delta s_r + \Delta s_l}{2} \cos \left(\theta + \frac{\Delta s_r - \Delta s_l}{2b} \right)$$

$$\frac{\Delta s_r + \Delta s_l}{2} \sin\left(\theta + \frac{\Delta s_r - \Delta s_l}{2b}\right)$$
$$\Delta s_r - \Delta s_l$$

$$\frac{\Delta s_r - \Delta s_r}{b}$$

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

5.2.4

Odometry: The Differential Drive Robot (3)

Error model

$$\Sigma_{\Delta} = covar(\Delta s_r, \Delta s_l) = \begin{bmatrix} k_r | \Delta s_r | & 0 \\ 0 & k_l | \Delta s_l \end{bmatrix}$$

$$\Sigma_{p'} = \nabla_{p} f \cdot \Sigma_{p} \cdot \nabla_{p} f^{T} + \nabla_{\Delta_{rl}} f \cdot \Sigma_{\Delta} \cdot \nabla_{\Delta_{rl}} f^{T}$$

$$F_{p} = \nabla_{p} f = \nabla_{p} (f^{T}) = \begin{bmatrix} \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \frac{\partial f}{\partial \theta} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\Delta s \sin(\theta + \Delta\theta/2) \\ 0 & 1 & \Delta s \cos(\theta + \Delta\theta/2) \\ 0 & 0 & 1 \end{bmatrix}$$

$$F_{\Delta_{rl}} = \begin{bmatrix} \frac{1}{2}\cos\left(\theta + \frac{\Delta\theta}{2}\right) - \frac{\Delta s}{2b}\sin\left(\theta + \frac{\Delta\theta}{2}\right) \frac{1}{2}\cos\left(\theta + \frac{\Delta\theta}{2}\right) + \frac{\Delta s}{2b}\sin\left(\theta + \frac{\Delta\theta}{2}\right) \\ \frac{1}{2}\sin\left(\theta + \frac{\Delta\theta}{2}\right) + \frac{\Delta s}{2b}\cos\left(\theta + \frac{\Delta\theta}{2}\right) \frac{1}{2}\sin\left(\theta + \frac{\Delta\theta}{2}\right) - \frac{\Delta s}{2b}\cos\left(\theta + \frac{\Delta\theta}{2}\right) \\ \frac{1}{b} - \frac{1}{b} \end{bmatrix}$$

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

Odometry: Growth of Pose uncertainty for Straight Line Movement

• Note: Errors perpendicular to the direction of movement are growing much faster!

Odometry: Growth of Pose uncertainty for Movement on a Circle

• Note: Errors ellipse in does not remain perpendicular to the direction of movement!

© R. Siegwart, I. Nourbakhsh

Odometry: Calibration of Errors I (Borenstein [5])

• The unidirectional square path experiment

Autonomous Mobile Robots, Chapter 5

© R. Siegwart, I. Nourbakhsh

5.2.4

Odometry: Calibration of Errors II (Borenstein [5])

• The bi-directional square path experiment

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

Odometry: Calibration of Errors III (Borenstein [5])

• The deterministic and non-deterministic errors

To localize or not?

Behavior Based Navigation

© R. Siegwart, I. Nourbakhsh

position x

position x

Model Based Navigation

5.3

© R. Siegwart, I. Nourbakhsh

• d) Discretized topological map with probability

Belief Representation

- a) Continuous map with single hypothesis
- b) Continuous map with multiple hypothesis
- d) Discretized map with probability distribution
- position x of topological map

distribution

Belief Representation: Characteristics

- Continuous
 - Precision bound by sensor data
 - Typically single hypothesis pose estimate
 - Lost when diverging (for single hypothesis)
 - Compact representation and typically reasonable in processing power.

- Discrete
 - Precision bound by resolution of discretisation
 - Typically multiple hypothesis pose estimate
 - Never lost (when diverges converges to another cell)
 - Important memory and processing power needed. (not the case for topological maps)

© R. Siegwart, I. Nourbakhsh

Bayesian Approach: A taxonomy of probabilistic models

Autonomous Mobile Robots, Chapter 5

5.4.1

Single-hypothesis Belief – Continuous Line-Map

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

5.4.1

Single-hypothesis Belief – Grid and Topological Map

Grid-base Representation - Multi Hypothesis

• Grid size around 20 cm².

Courtesy of W. Burgard

Path of the robot

Belief states at positions 2, 3 and 4

© R. Siegwart, I. Nourbakhsh

Map Representation

- 1. Map precision vs. application
- 2. Features precision vs. map precision
- 3. Precision vs. computational complexity
- Continuous Representation
- Decomposition (Discretization)

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

5.5

Representation of the Environment

- Environment Representation
 - Continuos Metric
 - ▶ Discrete Metric → metric grid
 - ➤ Discrete Topological → topological grid
- Environment Modeling
 - ➤ Raw sensor data, e.g. laser range data, grayscale images
 - o large volume of data, low distinctiveness on the level of individual values

 $\rightarrow x, y, \theta$

- o makes use of all acquired information
- Low level features, e.g. line other geometric features
 - o medium volume of data, average distinctiveness
 - o filters out the useful information, still ambiguities
- > High level features, e.g. doors, a car, the Eiffel tower
 - o low volume of data, high distinctiveness
 - o filters out the useful information, few/no ambiguities, not enough information

Autonomous Mobile Robots, Chapter 5

5.5.1

Map Representation: Continuous Line-Based

- a) Architecture map
- b) Representation with set of infinite lines

5.5.2

Autonomous Mobile Robots, Chapter 5

5.5.2

Map Representation: Decomposition (1)

• Exact cell decomposition

© R. Siegwart, I. Nourbakhsh

Map Representation: Decomposition (2)

- Fixed cell decomposition
 - ➤ Narrow passages disappear

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

5.5.2

Map Representation: Decomposition (3)

• Adaptive cell decomposition

Autonomous Mobile Robots, Chapter 5

5.5.2

Map Representation: Decomposition (4)

• Fixed cell decomposition – Example with very small cells

© R. Siegwart, I. Nourbakhsh

Map Representation: Decomposition (5)

Autonomous Mobile Robots, Chapter 5

5.5.2

Map Representation: Decomposition (7)

Autonomous Mobile Robots, Chapter 8

5.5.3

State-of-the-Art: Current Challenges in Map Representation

- Real world is dynamic
- Perception is still a major challenge
 - > Error prone
 - Extraction of useful information difficult
- Traversal of open space
- How to build up topology (boundaries of nodes)
- Sensor fusion
- . . .

Probabilistic, Map-Based Localization (1)

- Consider a mobile robot moving in a known environment.
- As it start to move, say from a precisely known location, it might keep track of its location using odometry.
- However, after a certain movement the robot will get very uncertain about its position.
- → update using an observation of its environment.
- observation lead also to an estimate of the robots position which can than be fused with the odometric estimation to get the best possible update of the robots actual position.

© R. Siegwart, I. Nourbakhsh

Probabilistic, Map-Based Localization (2)

- Action update
 - action model ACT

$$s'_t = Act(o_t, s_{t-1})$$

with o_t : Encoder Measurement, s_{t-1} : prior belief state

- increases uncertainty
- Perception update
 - > perception model SEE

$$s_t = See(i_t, s'_t)$$

with i_t : exteroceptive sensor inputs, s'_1 : updated belief state

decreases uncertainty

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

 Improving belief state by moving

Autonomous Mobile Robots, Chapter 5

5.6.1

Probabilistic, Map-Based Localization (3)

- Given
 - \triangleright the position estimate p(k|k)
 - \triangleright its covariance $\sum_{p}(k|k)$ for time k,
 - \triangleright the current control input u(k)
 - \triangleright the current set of observations Z(k+1) and
 - \triangleright the map M(k)
- Compute the
 - \triangleright new (posteriori) position estimate p(k+1|k+1) and
 - \triangleright its covariance $\sum_{p} (k+1|k+1)$
- Such a procedure usually involves five steps:

The Five Steps for Map-Based Localization

© R. Siegwart, I. Nourbakhsh

- Markov localization
 - localization starting from any unknown position
 - recovers from ambiguous situation.
 - However, to update the probability of all positions within the whole state space at any time requires a discrete representation of the space (grid). The required memory and calculation power can thus become very important if a fine grid is used.
- Kalman filter localization
 - tracks the robot and is inherently very precise and efficient.
 - However, if the uncertainty of the robot becomes to large (e.g. collision with an object) the Kalman filter will fail and the position is definitively lost.

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

5.6.2

Markov Localization (1)

- Markov localization uses an explicit, discrete representation for the probability of all position in the state space.
- This is usually done by representing the environment by a grid or a topological graph with a finite number of possible states (positions).
- During each update, the probability for each state (element) of the entire space is updated.

Autonomous Mobile Robots, Chapter 5

5.6.2

Markov Localization (2): Applying probabilty theory to robot localization

- P(A): Probability that A is true.
 - \triangleright e.g. $p(r_t = l)$: probability that the robot r is at position l at time t
- We wish to compute the probability of each indivitual robot position given actions and sensor measures.
- P(A/B): Conditional probability of A given that we know B.
 - \triangleright e.g. $p(r_t = l | i_t)$: probability that the robot is at position l given the sensors input i_r
- Product rule: $p(A \wedge B) = p(A|B)p(B)$

$$p(A \wedge B) = p(B|A)p(A)$$

• Bayes rule: $p(A|B) = \frac{p(B|A)p(A)}{p(B)}$

Markov Localization (3): Applying probability theory to robot localization

• Bayes rule:

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

➤ Map from a belief state and a sensor input to a refined belief state (SEE):

$$p(l|i) = \frac{p(i|l)p(l)}{p(i)}$$

- \triangleright p(l): belief state before perceptual update process
- > p(i | l): probability to get measurement i when being at position l
 - consult robots map, identify the probability of a certain sensor reading for each possible position in the map
- \triangleright p(i): normalization factor so that sum over all l for L equals 1.

© R. Siegwart, I. Nourbakhsh

Markov Localization (4): Applying probability theory to robot localization

• Bayes rule:

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

▶ Map from a belief state and a action to new belief state (ACT):

$$p(l_t|o_t) = \int p(l_t|l_{t-1}, o_t) p(l_{t-1}) dl_{t-1}'$$

- > Summing over all possible ways in which the robot may have reached l.
- Markov assumption: Update only depends on previous state and its most recent actions and perception.

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

5.6.2

Markov Localization: Case Study 1 - Topological Map (1)

- The Dervish Robot
- Topological Localization with Sonar

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

5.6.2

Markov Localization: Case Study 1 - Topological Map (2)

• Topological map of office-type environment

	Wall	Closed door	Open door	Open hallway	Foyer
Nothing detected	0.70	0.40	0.05	0.001	0.30
Closed door detected	0.30	0.60	0	0	0.05
Open door detected	0	0	0.90	0.10	0.15
Open hallway detected	0	0	0.001	0.90	0.50

Markov Localization: Case Study 1 - Topological Map (3)

• Update of believe state for position n given the percept-pair i

p(n|i) = p(i|n)p(n)

- \triangleright p(n/i): new likelihood for being in position n
- \triangleright p(n): current believe state
- \triangleright p(i/n): probability of seeing i in n (see table)

	Wall	Closed door	Open door	Open hallway	Foyer
Nothing detected	0.70	0.40	0.05	0.001	0.30
Closed door detected	0.30	0.60	0	0	0.05
Open door detected	0	0	0.90	0.10	0.15
Open hallway detected	0	0	0.001	0.90	0.50

- No action update!
 - ➤ However, the robot is moving and therefore we can apply a combination of action and perception update

$$p(n_t | i_t) = \int p(n_t | n'_{t-i}, i_t) p(n'_{t-i}) dn'_{t-i}$$

> t-i is used instead of t-1 because the topological distance between n' and n can very depending on the specific topological map

© R. Siegwart, I. Nourbakhsh

1 | 1-2 | 2 | 2-3 | 3 | 3-4 | 4

Markov Localization: Case Study 1 - Topological Map (4)

• The calculation

$$p(n_t | n'_{t-i}, i_t)$$

is calculated by multiplying the probability of generating perceptual event i at position n by the probability of having failed to generate perceptual event s at all nodes between n' and n.

$$p(n_t|n'_{t-i},i_t) = p(i_t,n_t) \cdot p(\emptyset,n_{t-1}) \cdot p(\emptyset,n_{t-2}) \cdot \dots \cdot p(\emptyset,n_{t-i+1})$$

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

5.6.2

Markov Localization: Case Study 1 - Topological Map (5)

- Example calculation
 - Assume that the robot has two nonzero belief states \$\frac{1}{4}\$
 - o p(1-2) = 1.0 ; p(2-3) = 0.2 * at that it is facing east with certainty
 - > State 2-3 will progress potentially to 3 and 3-4 to 4.
 - > State 3 and 3-4 can be eliminated because the likelihood of detecting an open door is zero.
 - ➤ The likelihood of reaching state 4 is the product of the initial likelihood p(2-3)= 0.2, (a) the likelihood of detecting anything at node 3 and the likelihood of detecting a hallway on the left and a door on the right at node 4 and (b) the likelihood of detecting a hallway on the left and a door on the right at node 4. (for simplicity we assume that the likelihood of detecting nothing at node 3-4 is 1.0)
 - > This leads to:
 - $0.2 \cdot [0.6 \cdot 0.4 + 0.4 \cdot 0.05] \cdot 0.7 \cdot [0.9 \cdot 0.1] \rightarrow p(4) = 0.003.$
 - o Similar calculation for progress from 1-2 $\rightarrow p(2) = 0.3$.
 - * Note that the probabilities do not sum up to one. For simplicity normalization was avoided in this example

 © R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

5.6.2

Markov Localization: Case Study 2 – Grid Map (1)

- Fine fixed decomposition grid (x, y, θ) , 15 cm x 15 cm x 1°
 - ➤ Action and perception update
- Action update:
 - Sum over previous possible positions and motion model

$$P(l_t | o_t) = \sum_{t} P(l_t | l'_{t-1}, o_t) \cdot p(l'_{t-1})$$

- ➤ Discrete version of eq. 5.22
- Perception update:
 - Given perception i, what is the probability to be a location l

$$p(l|i) = \frac{p(i|l)p(l)}{p(i)}$$

Markov Localization: Case Study 2 – Grid Map (2)

- The critical challenge is the calculation of p(i|l) $p(l|i) = \frac{p(i|l)p(l)}{p(i)}$
 - > The number of possible sensor readings and geometric contexts is extremely large
 - \triangleright p(i|l) is computed using a model of the robot's sensor behavior, its position l, and the local environment metric map around l.
 - > Assumptions
 - o Measurement error can be described by a distribution with a mean
 - o Non-zero chance for any measurement

Courtesy of W. Burgard

Ultrasound.

Laser range-finder.

© R. Siegwart, I. Nourbakhsh

Markov Localization: Case Study 2 – Grid Map (3)

- The 1D case
 - 1. Start
 - No knowledge at start, thus we have an uniform probability distribution.
 - 2. Robot perceives first pillar
 - Seeing only one pillar, the probability being at pillar 1, 2 or 3 is equal.
 - 3. Robot moves
 - Action model enables to estimate the new probability distribution based on the previous one and the motion.
 - 4. Robot perceives second pillar
 - ➤ Base on all prior knowledge the probability being at pillar 2 becomes dominant

Autonomous Mobile Robots, Chapter 5

5.6.2

Markov Localization: Case Study 2 – Grid Map (4)

Autonomous Mobile Robots, Chapter 5

5.0.

Markov Localization: Case Study 2 – Grid Map (5)

• Example 2: Museum

Laser scan 1

Courtesy of W. Burgard

Autonomous Mobile Robots, Chapter 5

Markov Localization: Case Study 2 – Grid Map (6)

• Example 2: Museum

Courtesy of W. Burgard

Laser scan 2

© R. Siegwart, I. Nourbakhsh

Markov Localization: Case Study 2 – Grid Map (7)

• Example 2: Museum

Courtesy of W. Burgard

Laser scan 3

© R. Siegwart, I. Nourbakhsh

5.6.2

Markov Localization: Case Study 2 – Grid Map (8)

• Example 2: Museum

Laser scan 13

Courtesy of W. Burgard

© R. Siegwart, I. Nourbakhsh

5.6.2

Markov Localization: Case Study 2 – Grid Map (9)

• Example 2: Museum

Laser scan 21

Courtesy of W. Burgard

Markov Localization: Case Study 2 – Grid Map (10)

- Fine fixed decomposition grids result in a huge state space
 - ➤ Very important processing power needed
 - > Large memory requirement
- Reducing complexity
 - > Various approached have been proposed for reducing complexity
 - The main goal is to reduce the number of states that are updated in each step
- Randomized Sampling / Particle Filter
 - ➤ Approximated belief state by representing only a 'representative' subset of all states (possible locations)
 - E.g update only 10% of all possible locations
 - The sampling process is typically weighted, e.g. put more samples around the local peaks in the probability density function
 - ➤ However, you have to ensure some less likely locations are still tracked, otherwise the robot might get lost

© R. Siegwart, I. Nourbakhsh

Kalman Filter Localization

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

5.6.3

Introduction to Kalman Filter (1)

Two measurements

$$\hat{q}_1 = q_1$$
 with variance σ_1^2
 $\hat{q}_2 = q_2$ with variance σ_2^2

• Weighted leas-square

$$S = \sum_{i=1}^{n} w_i (\hat{q} - q_i)^2$$

Finding minimum error

$$\frac{\partial S}{\partial \hat{q}} = \frac{\partial}{\partial \hat{q}} \sum_{i=1}^{n} w_i (\hat{q} - q_i)^2 = 2 \sum_{i=1}^{n} w_i (\hat{q} - q_i) = 0$$

• After some calculation and rearrangements

$$\hat{q} = q_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (q_2 - q_1)$$

Autonomous Mobile Robots, Chapter 5

5.6.3

Introduction to Kalman Filter (2)

• In Kalman Filter notation

$$\hat{x}_{k+1} = \hat{x}_k + K_{k+1}(z_{k+1} - \hat{x}_k)$$

$$K_{k+1} = \frac{\sigma_k^2}{\sigma_k^2 + \sigma_z^2}$$
; $\sigma_k^2 = \sigma_1^2$; $\sigma_z^2 = \sigma_2^2$

$$\sigma_{k+1}^2 = \sigma_k^2 - K_{k+1}\sigma_k^2$$

Autonomous Mobile Robots, Chapter 5 Kalman Filter for Mobile Robot Localization

5.6.3

Introduction to Kalman Filter (3)

• Dynamic Prediction (robot moving)

$$\frac{dx}{dt} = u + w \qquad u = veloci$$

$$w = noise$$

Motion

$$\hat{x}_{k'} = \hat{x}_k + u(t_{k+1} - t_k)$$

$$\sigma_{k'}^2 = \sigma_k^2 + \sigma_w^2 [t_{k+1} - t_k]$$

• Combining fusion and dynamic prediction

$$\hat{x}_{k+1} = \hat{x}_{k'} + K_{k+1}(z_{k+1} - \hat{x}_{k'})$$

$$= [\hat{x}_k + u(t_{k+1} - t_k)] + K_{k+1}[z_{k+1} - \hat{x}_k - u(t_{k+1} - t_k)]$$

$$K_{k+1} = \frac{\sigma_{k'}^2}{\sigma_{k'}^2 + \sigma_{k}^2} = \frac{\sigma_k^2 + \sigma_w^2[t_{k+1} - t_k]}{\sigma_k^2 + \sigma_k^2[t_{k+1} - t_k] + \sigma_k^2}$$

© R. Siegwart, I. Nourbakhsh

Robot Position Prediction

• In a first step, the robots position at time step k+1 is predicted based on its old location (time step k) and its movement due to the control input u(k):

$$\hat{p}(k+1|k) = f(\hat{p}(k|k), u(k))$$
 f: Odometry function

$$\Sigma_{p}(k+1|k) = \nabla_{p}f \cdot \Sigma_{p}(k|k) \cdot \nabla_{p}f^{T} + \nabla_{u}f \cdot \Sigma_{u}(k) \cdot \nabla_{u}f^{T}$$

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

Kalman Filter for Mobile Robot Localization

5.6.3

Robot Position Prediction: *Example*

$$\hat{p}(k+1|k) = \hat{p}(k|k) + u(k) = \begin{bmatrix} \hat{x}(k) \\ \hat{y}(k) \\ \hat{\theta}(k) \end{bmatrix} + \begin{bmatrix} \frac{\Delta s_r + \Delta s_l}{2} \cos(\theta + \frac{\Delta s_r - \Delta s_l}{2b}) \\ \frac{\Delta s_r + \Delta s_l}{2} \sin(\theta + \frac{\Delta s_r - \Delta s_l}{2b}) \\ \frac{\Delta s_r - \Delta s_l}{b} \end{bmatrix}$$

Odometry

 $\Sigma_{p}(k+1|k) = \nabla_{p}f \cdot \Sigma_{p}(k|k) \cdot \nabla_{p}f^{T} + \nabla_{u}f \cdot \Sigma_{u}(k) \cdot \nabla_{u}f^{T}$ $\Sigma_{u}(k) = \begin{bmatrix} k_{r}|\Delta s_{r}| & 0\\ 0 & k_{l}|\Delta s_{l}| \end{bmatrix}$ p(k+1) $p(k) = \begin{bmatrix} W \end{bmatrix}$

Autonomous Mobile Robots, Chapter 5

Kalman Filter for Mobile Robot Localization

Observation

- The second step it to obtain the observation Z(k+1) (measurements) from the robot's sensors at the new location at time k+1
- The observation usually consists of a set n_0 of single observations $z_j(k+1)$ extracted from the different sensors signals. It can represent *raw data scans* as well as *features* like *lines*, *doors* or *any kind of landmarks*.
- The parameters of the targets are usually observed in the sensor frame {S}.
 - Therefore the observations have to be transformed to the world frame {W} or
 - > the measurement prediction have to be transformed to the sensor frame {S}.
 - \triangleright This transformation is specified in the function h_i (seen later).

Kalman Filter for Mobile Robot Localization

Observation: *Example*

Extracted Lines in Model Space

$$z_{j}(k+1) = \begin{bmatrix} \alpha_{j} \\ r_{j} \end{bmatrix}$$
 Sensor (robot) frame

$$\Sigma_{R,j}(k+1) = \begin{bmatrix} \sigma_{\alpha\alpha} & \sigma_{\alpha r} \\ \sigma_{r\alpha} & \sigma_{rr} \end{bmatrix}_{i}$$

© R Siegwart I Nourhakhsh

5.6.3

Autonomous Mobile Robots, Chapter 5

Kalman Filter for Mobile Robot Localization

Measurement Prediction

- In the next step we use the predicted robot position $\hat{p} = (k+1|k)$ and the map M(k) to generate multiple predicted observations z_t .
- They have to be transformed into the sensor frame

$$\hat{z}_i(k+1) = h_i(z_t, \hat{p}(k+1|k))$$

• We can now define the measurement prediction as the set containing all n_i predicted observations

$$\hat{Z}(k+1) = \{\hat{z}_i(k+1)|(1 \le i \le n_i)\}$$

• The function h_i is mainly the coordinate transformation between the world frame and the sensor frame

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

Kalman Filter for Mobile Robot Localization

Measurement Prediction: *Example*

- For prediction, only the walls that are in the field of view of the robot are selected.
- This is done by linking the individual lines to the nodes of the path

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

Measurement Prediction: *Example*

Kalman Filter for Mobile Robot Localization

- The generated measurement predictions have to be transformed to the robot frame $\{R\}$ $W_{Z_{t,i}} = \begin{bmatrix} w \\ \alpha_{t,i} \\ r_{t,i} \end{bmatrix} \rightarrow {}^{R}_{Z_{t,i}} = \begin{bmatrix} \kappa \\ \alpha_{t,i} \\ r_{t,i} \end{bmatrix}$
- According to the figure in previous slide the transformation is given by

$$\hat{z}_{i}(k+1) = \begin{bmatrix} \alpha_{t,i} \\ r_{t,i} \end{bmatrix} = h_{i}(z_{t,i}, \hat{p}(k+1|k)) = \begin{bmatrix} w_{\alpha_{t,i}} - w_{\theta}(k+1|k) \\ w_{t,i} - w_{\theta}(k+1|k) \\ w_{t,i} - w_{\theta}(k+1|k) \cos(w_{\alpha_{t,i}}) + w_{\theta}(k+1|k) \sin(w_{\alpha_{t,i}}) \end{bmatrix}$$

and its Jacobian by

$$\nabla h_{i} = \begin{bmatrix} \frac{\partial \alpha_{t,i}}{\partial \hat{x}} & \frac{\partial \alpha_{t,i}}{\partial \hat{y}} & \frac{\partial \alpha_{t,i}}{\partial \hat{\theta}} \\ \frac{\partial r_{t,i}}{\partial \hat{x}} & \frac{\partial r_{t,i}}{\partial \hat{y}} & \frac{\partial r_{t,i}}{\partial \hat{\theta}} \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 \\ -\cos^{W} \alpha_{t,i} & -\sin^{W} \alpha_{t,i} & 0 \end{bmatrix}$$

Kalman Filter for Mobile Robot Localization

Matching

- Assignment from observations $z_j(k+1)$ (gained by the sensors) to the targets z_t (stored in the map)
- For each measurement prediction for which an corresponding observation is found we calculate the innovation:

$$v_{ij}(k+1) = [z_i(k+1) - h_i(z_t, \hat{p}(k+1|k))]$$

$$= \begin{bmatrix} \alpha_{j} \\ r_{j} \end{bmatrix} - \begin{bmatrix} w \\ \alpha_{t,i} - \hat{\theta}(k+1|k) \\ w \\ r_{t,i} - (\hat{x}(k+1|k)\cos(\hat{\alpha}_{t,i}) + \hat{y}(k+1|k)\sin(\hat{\alpha}_{t,i})) \end{bmatrix}$$

and its innovation covariance found by applying the error propagation law:

$$\Sigma_{IN,ij}(k+1) = \nabla h_i \cdot \Sigma_p(k+1|k) \cdot \nabla h_i^T + \Sigma_{R,i}(k+1)$$

• The validity of the correspondence between measurement and prediction can e.g. be evaluated through the Mahalanobis distance:

$$v_{ij}^{T}(k+1) \cdot \Sigma_{IN, ij}^{-1}(k+1) \cdot v_{ij}(k+1) \le g^{2}$$

© R. Siegwart, I. Nourbakhsh

5.6.3

Autonomous Mobile Robots, Chapter 5

Kalman Filter for Mobile Robot Localization

Matching: *Example*

Autonomous Mobile Robots, Chapter 5

Kalman Filter for Mobile Robot Localization

Matching: *Example*

• To find correspondence (pairs) of predicted and observed features we use the Mahalanobis distance

$$v_{ij}(k+1) \cdot \sum_{IN, ij}^{-1} (k+1) \cdot v_{ij}^{T}(k+1) \le g^2$$

with

$$\begin{aligned} v_{ij}(k+1) &= \left[z_{j}(k+1) - h_{i}(z_{t}, \hat{p}(k+1|k)) \right] \\ &= \left[\alpha_{j} \atop r_{j} \right] - \left[\begin{matrix} w \\ \alpha_{t,i} - \mathring{\theta}(k+1|k) \\ r_{t,i} - (\mathring{x}(k+1|k)\cos(\mathring{u}_{t,i}) + \mathring{y}(k+1|k)\sin(\mathring{u}_{t,i})) \right] \end{aligned}$$

$$\Sigma_{IN, ij}(k+1) = \nabla h_i \cdot \Sigma_p(k+1|k) \cdot \nabla h_i^T + \Sigma_{R, i}(k+1)$$

Autonomous Mobile Robots, Chapter 5

Kalman Filter for Mobile Robot Localization

Estimation: Applying the Kalman Filter

• Kalman filter gain:

$$K(k+1) = \sum_{D} (k+1|k) \cdot \nabla h^{T} \cdot \sum_{IN}^{-1} (k+1)$$

• Update of robot's position estimate:

$$\hat{p}(k+1|k+1) = \hat{p}(k+1|k) + K(k+1) \cdot v(k+1)$$

The associate variance

$$\Sigma_{n}(k+1|k+1) = \Sigma_{n}(k+1|k) - K(k+1) \cdot \Sigma_{IN}(k+1) \cdot K^{T}(k+1)$$

5.6.3

Kalman Filter for Mobile Robot Localization

Estimation: 1D Case

• For the one-dimensional case with $h_i(z_t, \hat{p}(k+1|k)) = z_t$ we can show that the estimation corresponds to the Kalman filter for one-dimension presented earlier.

$$K(k+1) = \frac{\sigma_p^2(k+1|k)}{\sigma_{IN}^2(k+1)} = \frac{\sigma_p^2(k+1|k)}{\sigma_p^2(k+1|k) + \sigma_R^2(k+1)}$$

$$\begin{split} \hat{p}(k+1|k+1) &= \hat{p}(k+1|k) + K(k+1) \cdot v(k+1) \\ &= \hat{p}(k+1|k) + K(k+1) \cdot \left[z_j(k+1) - h_i(z_i, \hat{p}(k+1|k)) \right] \\ &= \hat{p}(k+1|k) + K(k+1) \cdot \left[z_j(k+1) - z_i \right] \end{split}$$

© R. Siegwart, I. Nourbakhsh

5.6.3

Autonomous Mobile Robots, Chapter 5

Kalman Filter for Mobile Robot Localization

Estimation: *Example*

• Kalman filter estimation of the new robot position $\hat{p}(k|k)$:

➤ By fusing the prediction of robot position (magenta) with the innovation gained by the measurements (green) we get the updated estimate of the robot position (red)

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

Autonomous Indoor Navigation (Pygmalion EPFL)

- > very robust on-the-fly localization
- > one of the first systems with probabilistic sensor fusion
- > 47 steps,78 meter length, realistic office environment,
- > conducted 16 times > 1km overall distance
- > partially difficult surfaces (laser), partially few vertical edges (vision)

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

Other Localization Methods (not probabilistic)

Localization Based on Artificial Landmarks

5.7.1

5.7.1

Other Localization Methods (not probabilistic)

Other Localization Methods (not probabilistic)

Autonomous Mobile Robots, Chapter 5

5.7.1

Localization Based on Artificial Landmarks

Figure 6.11: a. The perceived width of a retroreflective target of known size is used to calculate range; b. while the elapsed time between sweep initiation and leading edge detection yields target bearing. (Courtesy of NAMCO Controls).

Figure 6.10: The LASERNET system can be used with projecting wall-mounted targets to guide an AGV at a predetermined offset distance. (Courtesy of NAMCO Controls.)

© R. Siegwart, I. Nourbakhsh

Localization Base on Artificial Landmarks

Figure 7.5: Polarized retroreflective proximity sensors are used to locate vertical strips of retroreflective tape attached to shelving support posts in the Camp Elliott warehouse installation of the MDARS security robot [Everett et al, 1994].

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

Other Localization Methods (not probabilistic)

5.7.3

Positioning Beacon Systems: Triangulation

Figure 6.1: The basic triangulation problem: a rotating sensor head measures the three angles λ_1 , λ_2 , and λ_3 between the vehicle's longitudinal axes and the three sources S_1 , S_2 , and S_3 .

Autonomous Mobile Robots, Chapter 5

Other Localization Methods (not probabilistic)

|

Positioning Beacon Systems: Triangulation

5.7.3

Other Localization Methods (not probabilistic)

Positioning Beacon Systems: Triangulation

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

Other Localization Methods (not probabilistic)

Positioning Beacon Systems: Docking

Figure 6.6: The structured-light near-infrared beacon on the Cybermotion battery recharging station defines an optimal path of approach for the *K2A Navmaster* robot [Everett, 1995].

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

Other Localization Methods (not probabilistic)

5.7.3

Positioning Beacon Systems: Bar-Code

Figure 6.14: Schematics of the Denning Branch International Robotics *LaserNav* laser-based scanning beacon system. (Courtesy of Denning Branch International Robotics.)

Figure 6.15: Denning Branch International Robotics (DBIR) can see *active targets* at up to 183 meters (600 ft) away. It can identify up to 32 active or passive targets. (Courtesy of Denning Branch International Robotics.)

Autonomous Mobile Robots, Chapter 5

Other Localization Methods (not probabilistic)

Positioning Beacon Systems

Figure 6.21: The Computerized Opto-electronic Navigation and Control (CONAC™) system employs an onboard, rapidly rotating and vertically spread laser beam, which sequentially contacts the networked detectors. (Courtesy of MTI Research, Inc.)

© R. Siegwart, I. Nourbakhsh

SLAM

The Simultaneous Localization and Mapping Problem

© R. Siegwart, I. Nourbakhsh

5.8

Autonomous Mobile Robots, Chapter 5

Map Building:

How to Establish a Map

1. By Hand

2. Automatically: Map Building

The robot learns its environment

Motivation:

- by hand: hard and costly
- dynamically changing environment
- different look due to different perception

3. Basic Requirements of a Map:

- a way to incorporate newly sensed information into the existing world model
- information and procedures for estimating the robot's position
- information to do path planning and other navigation task (e.g. obstacle avoidance)
- · Measure of Quality of a map
 - > topological correctness
 - metrical correctness

 But: Most environments are a mixture of predictable and unpredictable features
 → hybrid approach

model-based vs. behaviour-based

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

Map Building:

The Problems

 Map Maintaining: Keeping track of changes in the environment

 e.g. measure of belief of each environment feature 2. Representation and Reduction of Uncertainty

position of robot -> position of wall

position of wall -> position of robot

- probability densities for feature positions
- additional exploration strategies

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

5.8.1

General Map Building Schematics

Map Representation

- *M* is a set *n* of probabilistic feature locations
- Each feature is represented by the covariance matrix Σ_t and an associated credibility factor c_t

$$M = \{\hat{z}_t, \Sigma_t, c_t | (1 \le t \le n)\}$$

• c_t is between 0 and 1 and quantifies the belief in the existence of the feature in the environment

$$c_t(k) = 1 - e^{-\left(\frac{n_s}{a} - \frac{n_u}{b}\right)}$$

• a and b define the learning and forgetting rate and n_s and n_u are the number of matched and unobserved predictions up to time k, respectively.

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

Autonomous Map Building

Stochastic Map Technique

- Stacked system state vector: $X = \begin{bmatrix} x_r(k) & x_1(k) & x_2(k) & \dots & x_n(k) \end{bmatrix}^T$
- State covariance matrix:

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5

Autonomous Map Building

Example of Feature Based Mapping (EPFL)

5.8.1

Autonomous Mobile Robots, Chapter 5

0.01_

Cyclic Environments

Courtesy of Sebastian Thrun

- Small local error accumulate to arbitrary large global errors!
- This is usually irrelevant for navigation
- However, when closing loops, global error does matter

© R. Siegwart, I. Nourbakhsh

Dynamic Environments

- Dynamical changes require continuous mapping
- If extraction of high-level features would be possible, the mapping in dynamic environments would become significantly more straightforward.
 - > e.g. difference between human and wall
 - Environment modeling is a key factor for robustness

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 5 Map Building:

Exploration and Graph Construction

1. Exploration

- provides correct topology
- must recognize already visited location
- backtracking for unexplored openings

2. Graph Construction

Where to put the nodes?

Topology-based: at distinctive locations

Metric-based: where features disappear or get visible