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Autonomous Mobile Robots, Chapter 4 41.1

Classification of Sensors

« Proprioceptive sensors

» measure values internally to the system (robot),

» e.g. motor speed, wheel load, heading of the robot, battery status
» Exteroceptive sensors

» information from the robots environment

» distances to objects, intensity of the ambient light, unique features.
« Passive sensors

» energy coming for the environment
« Active sensors

» emit their proper energy and measure the reaction

» better performance, but some influence on envrionment
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Autonomous Mobile Robots, Chapter 4 41.1

General Classification (1)

General classification Sensor PC or AorP
(typical use) Sensor System HE

Tactile sensors Contact switches, bumpers EC P

(detection of physical contact or Optical barriers EC A

closeness: security switches) Noncontact proximily sensors EC A

Wheel/motor sensors Brush encoders PC P

(wheel/motor speed and position) Potentiometers PC P
Synchros, resolvers PC A
Optical encoders PC A
Magnetic encoders PC A
Inductive encoders PC A
Capacitive encoders PC A

Heading sensors Compass EC P

(orientation of the robot in relation to | Gyroscopes PC P

a fixed reference frame) Inclinometers EC AP

A, active: P, passive: P/A. passive/active: PC, proprioceptive: EC. exteroceptive.
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General Classification (2)

General classification Sensor PC or
(typical use) Sensor System E@ AorP
Ground-based beacons GPS EC A
{localization in a fixed reference Active optical or RF beacons EC A
frame) Active ultrasonic beacons EC A
Refleetive beacons EC A
Active ranging Retlectivity sensors EC A
(reflectivity, time-of-flight, and geo- Ultrasonic sensor EC A
metric triangulation) Laser rangefinder EC A
Optical tnangulation (103) EC A
Structured light (2D) EC A
Motion/speed sensors Daoppler radar EC A
{speed relative to fixed or moving Doppler sound EC A
objects)
Vision-based sensors CCD/CMOS camera(s) EC P
(visual ranging, whole-image analy- Visual ranging packages
sis, scgmentation, object recognition) | Object tracking packages

©R. Siegwart, |. Nourbakhsh

Characterizing Sensor Performance (1)

Basic sensor response ratings
Dynamic range
ratio between lower and upper limits, usually in decibels (dB, power)
e.g. power measurement from 1 Milliwatt to 20 Watts

20 Iﬂg[oﬂ(})l

]= 86dB

e.g. voltage measurement from 1 Millivolt to 20 Volt

Range
upper limit
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Characterizing Sensor Performance (2)

Basic sensor response ratings (cont.)

Resolution

minimum difference between two values
usually: lower limit of dynamic range = resolution
for digital sensorsit is usually the A/D resolution.

e.g. 5V /255 (8 hit)
Linearity

variation of output signal as function of the input signal

linearity is lessimportant when signal is after treated with a computer
Bandwidth or Frequency

the speed with which a sensor can provide a stream of readings
usually there is an upper limit depending on the sensor and the sampling rate
Lower limit is also possible, e.g. acceleration sensor

©R. Siegwart, |. Nourbakhsh

In Situ Sensor Performance (1)

Sengitivity
ratio of output change to input change

however, in real world environment, the sensor has very often high
sengitivity to other environmental changes, e.g. illumination

Cross-sensitivity

sensitivity to environmental parametersthat are orthogonal to the target
parameters

Error / Accuracy
difference between the sensor’ s output and the true value

m = measured value

[m — v
accuracy = 1 - ———
v =truevalue

v
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In Situ Sensor Performance (2)

Systematic error -> deterministic errors
caused by factorsthat can (in theory) be modeled -> prediction
e.g. calibration of a laser sensor or of the distortion cause by the optic of
acamera
Random error -> non-deterministic
no prediction possible
however, they can be described probabilistically
e.g. Hue instability of camera, black level noise of camera ..
Precision

. i % range
reproducibility of sensor results precision = —05—
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Characterizing Error: The Challengesin Mobile Robotics

Mobile Robot has to perceive, analyze and interpret the state of the
surrounding
Measurements in real world environment are dynamically changing
and error prone.
Examples:

changing illuminations

specular reflections

light or sound absorbing surfaces

rarely possible to model -> appear asrandom errors
systematic errors and random errors might be well defined in controlled
environment.
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Multi-Modal Error Distributions: The Challengesin ...

Behavior of sensors modeled by probability distribution (random

errors)
usually very little knowledge about the causes of randomerrors
often probability distribution is assumed to be symmetric or even
Gaussian
however, it isimportant to realize how wrong this can be!

Examples:
Sonar (ultrasonic) sensor might overestimate the distance in real environment and
istherefore not symmetric
Thus the sonar sensor might be best modeled by two modes:

- mode for the case that the signal returns directly
- mode for the case that the signals returns after multi-path reflections.

Stereo vision system might correlate to images incorrectly, thus causing results that
make no sense at all
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Wheel / Motor Encoders (1)

measure position or speed of the wheels or steering
wheel movements can be integrated to get an estimate of the robots position ->
odometry
optical encoders are proprioceptive sensors
thus the position estimation in relation to a fixed reference frameis only
valuable for short movements.
typical resolutions: 2000 increments per revolution.
for high resolution: interpolation

State ChA ChB

S, High Low
A J S, High  High

Sg Low High
B

Sy Low Low

1234
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Wheel / Motor Encoders (2)
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Heading Sensors

Heading sensors can be proprioceptive (gyroscope, inclinometer) or
exteroceptive (compass).
Used to determine the robots orientation and inclination.

Allow, together with an appropriate velocity information, to integrate
the movement to an position estimate.
This procedureis called dead reckoning (ship navigation)
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Compass

Since over 2000 B.C.

when Chinese suspended a piece of naturally magnetite from a silk thread and
used it to guide a chariot over land.

Magnetic field on earth

absolute measure for orientation.
Large variety of solutions to measure the earth magnetic field

mechanical magnetic compass

direct measure of the magnetic field (Hall-effect, magnetor esi stive sensors)
Major drawback

weakness of the earth field

easily disturbed by magnetic objects or other sources

not feasible for indoor environments
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Gyroscope

Heading sensors, that keep the orientation to afixed frame
absolute measure for the heading of a mobile system.
Two categories, the mechanical and the optical gyroscopes

Mechanical Gyroscopes
Sandard gyro
Rated gyro

Optical Gyroscopes
Rated gyro
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M echanical Gyroscopes

Concept: inertial properties of afast spinning rotor

gyroscopic precession
Angular momentum associated with a spinning wheel keeps the axis of the gyroscope
inertialy stable.

Reactive torquet (tracking stability) is proportional to the spinning speed w, the
precession speed W and the wheelsinertial.

No torque can be transmitted from the outer pivot to the wheel axis
spinning axis will therefore be space-stable .
Quality: 0.1° in 6 hours L outerpvat T=1 @ Q)

If the spinning axis is aligned with the
north-south meridian, the earth’ s rotation
has no effect on the gyro’'s horizontal axis

If it points east-west, the horizontal axis — Wheelbearing
reads the earth rotation

. ,— Outer gimbal

=3
\_'rqI Inner pivot
e 1
ﬁl\\, —
A7)

.

Rate gyros

Same basic arrangement shown as regular mechanical gyros

But: gimble(s) are restrained by atorsiona spring
enables to measure angular speeds instead of the orientation.

Others, more simple gyroscopes, use Coriolis forces to measure
changes in heading.
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Optical Gyroscopes

First commercia use started only in the early 1980 when they where
first installed in airplanes.
Optical gyroscopes
angular speed (heading) sensors using two monochromic light (or laser)
beams from the same source.

Onistraveling in afiber clockwise, the other counterclockwise around
acylinder
Laser beam traveling in direction of rotation

dlightly shorter path -> shows a higher frequency

difference in frequency Af of the two beamsis proportional to the
angular velocity 2 of the cylinder

New solid-state optical gyroscopes based on the same principle are
build using microfabrication technology.
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Ground-Based Active and Passive Beacons

Elegant way to solve the localization problem in mobile robotics

Beacons are signaling guiding devices with a precisely known position

Beacon base navigation is used since the humans started to travel
Natural beacons (landmarks) like stars, mountains or the sun
Artificial beacons like lighthouses

The recently introduced Global Positioning System (GPS) revol utionized modern
navigation technology

Already one of the key sensors for outdoor mobile robotics

For indoor robots GPSis not applicable, =
Major drawback with the use of beacons in indoor:

Beacons require changesin the environment

-> costly.

Limit flexibility and adaptability to changing

environments.




Global Positioning System (GPS) (1)

Developed for military use
Recently it became accessible for commercial applications

24 satellites (including three spares) orbiting the earth every 12 hours at a
height of 20.190 km.

Four satellites are located in each of six planesinclined 55 degrees with respect
to the plane of the earth’ s equators

Location of any GPSreceiver is determined through a time of flight
measurement

Technical challenges:
Time synchronization between the individual satellites and the GPSreceiver
Real time update of the exact location of the satellites
Precise measurement of the time of flight
Interferences with other signals

©R. Siegwart, |. Nourbakhsh

Global Positioning System (GPS) (2)
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Global Positioning System (GPS) (3)

Time synchronization:
atomic clocks on each satellite
monitoring them from different ground stations.
Ultra-precision time synchronization is extremely important
electromagnetic radiation propagates at light speed,
Roughly 0.3 m per nanosecond.
position accuracy proportional to precision of time measurement.
Real time update of the exact location of the satellites:
monitoring the satellites from a number of widely distributed ground stations

master station analyses all the measurements and transmits the actual position to each of
the satellites

Exact measurement of the time of flight
the receiver correlates a pseudocode with the same code coming from the satellite
The delay time for best correlation represents the time of flight.
quartz clock on the GPSreceivers are not very precise
the range measurement with four satellite
allows to identify the three values (X, y, 2) for the position and the clock correction AT

Recent commercial GPS receiver devices alows position accuracies down to a couple meters.
©R. Siegwart, |. Nourbakhsh




Range Sensor s (time of flight) (1)

Large range distance measurement -> called range sensors
Range information:

key element for localization and environment modeling
Ultrasonic sensors as well as laser range sensors make use of
propagation speed of sound or el ectromagnetic waves respectively.
The traveled distance of a sound or electromagnetic wave is given by

d=c.t

Where

d = distance traveled (usually round-trip)

¢ = speed of wave propagation

t = time of flight.
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Range Sensor s (time of flight) (2)

It isimportant to point out
Propagation speed v of sound: 0.3 nVms
Propagation speed v of of electromagnetic signals. 0.3 m/ns,

one million times faster.

3 meters
is 10 ms ultrasonic system
only 10 nsfor a laser range sensor
time of flight t with electromagnetic signalsis not an easy task
laser range sensors expensive and delicate

The quality of time of flight range sensors manly depends on:
Uncertainties about the exact time of arrival of the reflected signal
Inaccuraciesin the time of fight measure (laser range sensors)
Opening angle of transmitted beam (ultrasonic range sensors)
Interaction with the target (surface, specular reflections)
Variation of propagation speed
Soeed of mobile robot and target (if not at stand still)
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Ultrasonic Sensor (time of flight, sound) (1)

transmit a packet of (ultrasonic) pressure waves

distance d of the echoing object can be calculated based on the
propagation speed of sound ¢ and the time of flight t.
gt
2
The speed of sound ¢ (340 m/s) in air is given by
c=.7.RT
where

¥ ration of specific heats

R: gas constant

T: temperature in degree Kelvin
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Ultrasonic Sensor (time of flight, sound) (2)

Wave packet

L
Transmitted sound Uﬂunuﬂuﬂ]d o 'I."ﬂ"u'
" treshold -
Analog echo signal ] /
. e o a AR, .
Tras’]OId nu '\.IJ' IUI Iur‘iui’ IUI IUJ‘lLIII‘ \.U ,.!5
Digital echosignal A& i
alRTARi ol —
Integrated time y | integratpr 1 Time of flight (sensor output)
Output signal [ I~ ]
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Signals of an ultrasonic sensor
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Ultrasonic Sensor (time of flight, sound) (3)

typicaly afrequency: 40 - 180 kHz

generation of sound wave: piezo transducer
transmitter and receiver separated or not separated

sound beam propagates in a cone like manner
opening angles around 20 to 40 degrees
regions of constant depth
segments of an arc (spherefor 3D) ..

__ measurement cone

0°

Amplitude [dB]

Typical intensity distribution of a ultrasonic sensor
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Ultrasonic Sensor (time of flight, sound) (4)

Other problems for ultrasonic sensors «eef—
soft surfaces that absorb most of the 5T
sound energy

surfaces that are fare frombeing
perpendicular to the direction of
the sound -> specular reflection

.

CYLINDER

b) results from different geometric primitives
© R. Siegwart, I. Nourbakhsh

Laser Range Sensor (time of flight, electromagnetic) (1)

|
|
Transmitter v |
- L =P

Transmitted Beam
Measurement | Reflected Beam

Transmitted and received beams coaxial
Transmitter illuminates a target with a collimated beam
Received detects the time needed for round-trip
A mechanical mechanism with amirror sweeps
2 or 3D measurement
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Laser Range Sensor (time of flight, electromagnetic) (2)

Time of flight measurement
Pulsed laser
measurement of elapsed time directly
resolving picoseconds
Beat frequency between a frequency modulated continuous wave and
its received reflection
Phase shift measurement to produce range estimation
technically easier than the above two methods.
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Laser Range Sensor (time of flight, electromagnetic) (3)

Phase-Shift Measurement
) i D Y I
Transmitter SN |

— R =

Transmitted Beam
,,,,,,,,, Reflected Beam

A =clf D':L+2D:L+il
2

Where
c: isthe speed of light; f the modulating frequency; D’ covered by the emitted light
is

for f = 5Mhz (asinthe AT&T. sensor), 4 = 60 meters
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Laser Range Sensor (time of flight, electromagnetic) (4)

Distance D, between the beam splitter and the target

D= i o0 (2.33)
ViV o
where

@ phase difference between the transmitted

Theoretically ambiguous range estimates
since for example if A = 60 meters, atarget at a range of 5 meters = target at 35
meters

Amplitude[V]

Transmitted Beam
. R . Reflected Beam
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Laser Range Sensor (time of flight, electromagnetic) (5)

Confidence in the range (phase estimate) isinversely proportional to the square of the

received signal amplitude.
a) b)
Reflected light

!
Transmitted light —

3 : Reflected light
[ rme- N
: l: LEb:“Lﬂsel
=4
Detector
Figure 4.11

(a) Schematic drawing of laser range sensor with rotating mirror: (b) Scanning range sensor from EPS
Technologies Inc.: (c) Industrial 180 degree laser range sensor from Sick Inc., Germany

L aser Range Sensor (time of flight, electromagnetic)

Typical range image of a 2D laser range sensor with arotating mirror. The length of
the lines through the measurement points indicate the uncertainties.
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Autonomous Mobile Robots, Chapter 4

4.1.6 4.1.6
Triangulation Ranging Laser Triangulation (1D)
Ja D 1
» geometrical properties of theimage to establish a distance measurement _ | ‘-\\ !
« eg. project awell defined light pattern (e.g. point, line) onto the environment. La&w"me‘j beam T | o
» reflected light is than captured by a photo-sensitive line or matrix (camera)
sensor device L g ’,/ Target
» simple triangulation allows to establish a distance. | _
« e.g. size of an captured object is precisely known X o ;z";"e;tgd Beam
» triangulation without light projecting | v Lens ' - e
Position-Sensitive Device (PD)
or Linear Camera
Principle of 1D laser triangulation.
L . . L
» distanceis proportional to the 1/x D=f ;
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Structured Light (vision, 2 or 3D)

D
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» Eliminate the correspondence problem by projecting structured light on the scene.
« Slits of light or emit collimated light (possibly laser) by means of arotating mirror.
o Light perceived by camera

» Rangeto an illuminated point can then be determined from simple geometry.
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Structured Light (vision, 2 or 3D)

Laser / Collimated beam

» One dimensional schematic
of the principle

« From thefigure, smple

geometry shows that:
_ _buw _b-f
¥ feota —u ° feota —u
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Structured Light (vision, 2 or 3D)

Range resolution is defined as the triangulation gain G;; :

o b-f
z 9%~ 7
Influence of o: “ L
dor _ o = bsinaz
: &z o 2
Baseline length b: z

the smaller b isthe more compact the sensor can be.
the larger b isthe better the range resolution is.
Note: for large b, the chance that an illuminated point is not visible to the receiver
increases.
Focal length f:
larger focal length f can provide
either alarger field of view
or an improved range resolution

however, large focal length means a larger sensor head
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Doppler Effect Based (Radar or Sound)

Transmitter/

al b)
Receiver
: Receiver ; (
] o ecener ! (m) (H.’ﬁ ot

a) between two moving objects b) between a moving and a stationary object

/. = J; (1 +v/¢)if transmitter is moving 1, =1 ﬁ if receiver ismoving
v/c
e 2f,vcos® Af- ¢
f *,frf,.* - Doppler frequency shift v = 2.)‘}C059 relative speed

Sound waves: e.g. industrial process control, security, fish finding, measure of ground speed
Electromagnetic waves. e.g. vibration measurement, radar systems, object tracking
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Vision-based Sensors: Hardware

CCD (light-sensitive, discharging capacitors of 5to 25 micron)

Sony DFW-X700 . _____

2048 x 2048 CCD array

Orangemicro iBOT Firewire
Cannon IXUS 300

CMOS (Complementary Metal Oxide Semiconductor technology)
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Vision in General

Vision is our most powerful sense. It provides us with an enormous amount of information about
our environment and enables us to interact intelligently with the environment, all without
direct physical contact. It is therefore not surprising that an enormous amount of effort has
occurred to give machines a sense of vision (almost since the beginning of digital computer
technology!)

Visionis aso our most complicated sense. Whilst we can reconstruct views with high resolution
on photographic paper, the next step of understanding how the brain processes the information
from our eyesis till initsinfancy.

When an image is recorded through a camera, a 3 dimensional sceneis projected onto a 2
dimensiona plane (the film or alight sensitive photo sensitive array). In order to try and
recover some “useful information” from the scene, usually edge detectors are used to find the
contours of the objects. From these edges or edge fragments, much research time has to been
spent attempting to produce fool proof algorithms which can provide all the necessary
information required to reconstruct the 3-D scene which produced the 2-D image. Even in this
simple situation, the edge fragments found are not perfect, and will reguire careful processing
if they areto be integrated into a clean line drawing representing the edges of objects. The
interpretation of 3-D scenes from 2-D imagesis not atrivial task. However, using stereo
imaging or triangul ation methods, vision can become a powerful tool for environment

capturing.
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Vision-based Sensors. Sensing

4.1.8

» Visual Range Sensors
» Depth from focus
» Stereovision

« Motion and Optical Flow

« Color Tracking Sensors
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Depth from Focus (1)

4.1.8
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Depth from Focus (2)

4.1.8

» Measure of sub-image gradient sharpness, = Zlf(x,y)ff(xf 1,y

sharpness, = z‘(f(x,y)—1’(:'6—2,}’—2))2
X, v
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Depth from Focus (3)

« Point Spread Function h

4.1.8

L i (g5 + 0= SR

h(xgaygaxfayfaRx’y) = |ntR

0 if (xg=x)"+ vy =3 ) >R

g(Xg ¥g) = Y h(xXg Yoo X, s Ry (. )

X,y
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Stereo Vision

Idealized camera geometry for stereo vision
Disparity between two images -> Computing of depth
Fromthe figureit can be seen that

objects contour

Xy x+b/2 X, x—h/2 yzh N
i — and - = ——— LN
7 2 7 : =
\
\ \
X, —X, b \ N
! - 8 — - \ \
I z \ N
\ \
\
L N
(x,+x,)72 (v, +.)72 \ \
- b : - b lens r
Y= X=X, !
z=5b / -
3‘[ - ' iibia focal plane

Stereo Vision

Distanceisinversely proportional to disparity
closer objects can be measured more accurately

Disparity is proportional to b.
For a given disparity error, the accuracy of the depth estimate
increases with increasing baseline b.

However, as b isincreased, some objects may appear in one camera,
but not in the other.

A point visible from both cameras produces a conjugate pair.

Conjugate pairs lie on epipolar line (parallel to the x-axis for the
arrangement in the figure above)
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Stereo Vision —the general case

The same point P is measured differently in the left cameraimage :

SA— .} . Pe
f’,_R‘I',JFJ'” [N

where ‘ .
Risa 3 x 3 rotation matrix \ I

_ . . I’l‘\‘ \\
r, = offset translation matrix Ly .
2 b LN
: X X,

left camera right camera
coordinate system coordinate system

The above equations have two uses:
We can find r, if we knew Rand r, and r,. Note:
For perfectly aligned cameras R=1 (unity matrix)
We can calibrate the systemand find r;, 1y, ...
given corresponding values of X, y;, 7, X., y, and z..
We have 12 unknowns and require 12 equations:
we require 4 conjugate points for a complete calibration.
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Stereo Vision

Calculation of Depth

The key problemin stereo is now how do we solve the correspondence
problem?

Gray-Level Matching
match gray-level wave forms on corresponding epipolar lines
“brightness’ = imageirradiance (x,y)
Zero Crossing of Laplacian of Gaussian is a widely used approach for
identifying feature in the left and right image
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Autonomous Mobile Robots, Chapter 4 41.8

Zero Crossing of Laplacian of Gaussian

» ldentification of features that are stable and match well

« Laplacian of intensity image L(x,y) = _{.+a_‘;
X dy
010
«» Convolution with P: L=P®I P= {1 -4 1]
010
.S/ EdgeDatection [ ] [ e

in Noisy Image
» filtering through
Gaussian smoothing

al= alv 3l-
alv als 3w
zl- &~ 3l-

Autonomous Mobile Robots, Chapter 4 41.8

Stereo Vision Example

«» Extracting depth information from a stereo image

» al and a2: left and right image E

» bl and b2: vertical edge filtered
left and right image;
filter = [124-2-10-2421]

» ¢ confidence image:
bright = high confidence (good texture)

» d: depth image:
bright = close; dark = far

418
SVM Stereo Head Mounted on an All-terrain Robot

» Stereo Camera
» Videre Design
> Www.videredesign.com
« Robot
» Shrimp, EPFL
« Application of Stereo Vision

» Traversability calculation based on
stereo images for outdoor navigation

» Motion tracking

© R. Siegwart, I. Nourbakhsh
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Optical Flow (1)

o E (X, y,t) =irradiance at timet at the image point (X, y).
e U(X y)and v (x,y) = optical flow vector at that point
» find a new image for a point where the irradiance will be the same at time t+ ot

E(x+udty+ vor, t+0t) = E(x, y. 1)

« If brightness varies smoothly with x, y and t we can expand the |eft hand side as a
Taylor seriesto obtain:
E(x,y, 1)+ Sxa—E + 8/1:@‘ + Sl‘a—E +e = E(x, v 1)
dx ay ot

» e=second and higher order termsin ox ...
» Withot-> 0
dEdx  dEdy  OE _

dEdx  JEdy _dxy o _dy
dvdr dvdt Ot

S
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Optical Flow (2)

from which we can abbreviate:
Eu+Ev+E =0

optical flow constraint equation

The derivatives Ex, Ey and Et are estimated from the image.

From this equation we can only get the direction of the velocity (u, v) and not unique
valuesfor uandv.

One therefore introduces additional constraint, smoothness of optical flow (see
lecture notes)

© R. Siegwart, I. Nourbakhsh

Problemswith Optical Flow

Motion of the sphere or the light source here demonstrates that optical flow is not
always the same as the motion field.

\l/ \lf/_—\\lf
/:l\ /:\ /:l\

Left: Discontinuitiesin Optical Flow
silhouettes (one object occluding ancther)
discontinuitiesin optical flow

find these points
stop joining with smooth solution.

Right: Motion of sphere, moving light sources

© R. Siegwart, I. Nourbakhsh

Color Tracking Sensors

Motion estimation of ball and robot for soccer playing using color
tracking

© R. Siegwart, I. Nourbakhsh

l Acquisition

| Adaptive Human-Motion Tracking

‘ Decimation by factor 5
I

v v

Motion detector Skin color detector

Validation

Grayscale convers.

«v( Motion presence

|

Image differencing

Motion history im.

Skin color presence

led

Big contour presence

> Motion initialization

RGB to HSV convers.

Hue-saturat. Limiter

Skin color binary im.

Segmentation .
2 Average travelled led Image closing
AIstaNce Segmentation
Adaptation
Continuous led l
adaptation Tracking

Distance scoring

Contour to target
assignment

l Narrative-level output ‘
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Adaptive Human-Motion Tracking

T P |

4.1.8

<28 ATD B2Ac 8
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Uncertainty Representation

Sensing is always related to uncertainties.
What are the sources of uncertainties?
How can uncertainty be represented or quantified?
How do they propagate - uncertainty of a function of uncertain values?
How do uncertainties combine if different sensor reading are fused?
What is the merit of all thisfor mobile robotics?

Some definitions:

Sensitivity: G=out/in

Resolution: Smallest change which can be detected
Dynamic Range: value,,,,/ resolution (10* -106)

Accuracy: error, = (measured value) - (true value)

Errors are usually unknown:
deterministic <¢@===)> non deterministic (random)

© R. Siegwart, I. Nourbakhsh

Uncertainty Representation (2)

Statistical representation and independence of random variables on
blackbog-

A Probability Density f(x)

Area =1

" i — .

0 Mean u
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Gaussian Distribution

— — l % 2
L=0ando fixy = ] exp(—("_“) ]

0.4

Gaussian or
"normal”
distribution

.0Q135 11359 ' .3413 |.3413 | 1359 99135
-3|Ci -2|0 --I:i 0 l'l‘_i 2ICF BIU
2 1 X 1 2
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TheError Propagation Law: Motivation

Imagine extracting aline based
on point measurements with
uncertainties.

The model parameters p; (length of the
perpendicular) and 6; (its angle to the
abscissa) describe aline uniquely.

X = (pi, 0))

The question:
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TheError Propagation Law

Xl B ——— — Yl
X System I

Xn _— B -Ym

Error propagation in a multiple-input multi-output system with n
inputs and m outputs.

V=500 )
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TheError Propagation Law

One-dimensional case of a Y
nonlinear error propagation
problem

It can be shown, that -
the output covariance B
matrix C, is given by k-,
the error propagation law:

. LT
Cy = FyCyfy

where

C,: covariance matrix representing the input uncertainties
C,: covariance matrix representing the propagated uncertainties for the outputs.
Fy: isthe Jacobian matrix defined as: o

ox, " ax
P 2] |7 T
Jax, U ox|

ax, v ax,

Fy=Vf= [Vx;f(.]\")ﬂr = |?r:.I

./ m

which is the transposed of the gradient of f(X).
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Feature Extraction - Scene I nter pretation

k‘ scene
_, sensing inter-
7’ pretation

A mobile robot must be able to determine its relationship to the
environment by sensing and interpreting the measured signals.
A wide variety of sensing technologies are available as we have seen in
previous section.

However, the main difficulty liesin interpreting these data, that is, in
deciding what the sensor signals tell us about the environment.

Environment

Choice of sensors (e.g. in-door, out-door, walls, free space ...)
Choice of the environment model

© R. Siegwart, I. Nourbakhsh

Feature

Features are distinctive elements or geometric primitives of the environment.

They usually can be extracted from measurements and mathematically
described.

low-level features (geometric primitives) like lines, circles
high-level features like edges, doors, tables or trash cans.

In mobile robotics features help for
localization and map building.
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Environment Representation and M odeling — Features

Environment Representation

Continuous Metric —>XY,0

Discrete Metric — metric grid

Discrete Topological — topological grid
Environment Modeling

Raw sensor data, e.g. laser range data, grayscale images

large volume of data, low distinctiveness
makes use of all acquired information
Low level features, e.g. line other geometric features
medium volume of data, average distinctiveness
filters out the useful information, still ambiguities
High level features, e.g. doors, a car, the Eiffel tower
low volume of data, high distinctiveness
filters out the useful information, few/no ambiguities, not enough information

© R. Siegwart, I. Nourbakhsh

Environment M odels: Examples

a) - -

y [m]

- -4 -3 -2 -1 0 1 2 3 4
x [m]

A: Feature base Model

B: Occupancy Grid
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Featur e extraction base on range images

Geometric primitives like line segments, circles, corners, edges

Most other geometric primitives the parametric description of the features
becomes already to complex and no closed form solutions exist.

However, lines segments are very often sufficient to model the environment,
especialy for indoor applications.

© R. Siegwart, I. Nourbakhsh

Features Based on Range Data: Line Extraction (1)

p;cos(0,—a)—r = d,;

Least Square x;=(p;, 6)
S = Ediz = Z(piCOS(Gf—Ot)—f”)2

oS aS _

o 0 o ;
Weighted Least Square

w; = I/G?

S = wadiz - sz’(picos(ez'*a)ir)z
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Autonomous Mobile Robots, Chapter 4

43.1

Features Based on Range Data: Line Extraction (2)

» 17 measurement
« error (c) proportional to p?
» weighted least square:

w;, = 1/0?

Z\vipfsin 20, - %22“’,—“}9,—9;9059; sin®;

z“'r.pf cos28, - ZLMZZIr'r.\r’-pjpjcus(B'. + Gj)

o = lalan

zw‘.p‘.cas{ﬂi ~ o)
e e

le".

08 ]

03
0z

[:X}

=01 L 01 02 03 04 05 08
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Autonomous Mobile Robots, Chapter 4

Propagation of uncertainty during line extraction

fo Sy ’7

Car = »| £ (output covariance matrix)
G4k O
- [cp 0} _ |diag(cy) 0 2nx2n
X
0 G 0 diag(op)
Jacobian:
da da  do da da  da
£ _ |9P1 0P, " 0P, 90, 00, " 90,
rg —
or_or 9 or or o
dP, 0P, " 9P, 00, 00, 90,

T
Cur = FpoCxlpp

43.1
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Autonomous Mobile Robots, Chapter 4

4.3.1

Segmentation for Line Extraction

a) Image Space ﬂ f

A set of npneighboring points
of the image space

(x;-%) (x,~%)<d,

Fig4.36

b) Model Space
By=rm} ’

Evidence accumulation in the model space
— Clusters of normally distributed vectors

Clustering: Finding neighboring segments of a common line
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Autonomous Mobile Robots, Chapter 4

a) '

Angular Histogram (range)

4.3.1

YA Y, U D0 U .Y + |
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Extracting Other Geometric Features

1%

()
-/

="

— | 1

S feature Z feature

L

door feature
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Feature extraction

Scheme and toolsin computer vision

Recognition of featuresis, in general, a complex procedure requiring a
variety of stepsthat successively transform the iconic data to recognition

information.

Handling unconstrained environmentsis still very challenging problem.

© R. Siegwart, I. Nourbakhsh

Visual Appearance-base Feature Extraction (Vision)

I mage Processing Scheme
Computer Vison

conditioning
L
jo)]
g l smplified image
labeling/grouping
environment .
‘ groups of pixel
A Y
- extracting
2
8 ‘ .
- properties
c
= ¥
cE» matching —a— model
° |

Toolsin Computer Vision

thresholding

connected
component
labeling

edge
detection

Hough
transfor-
mation

filtering

correlation

disparity
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Feature Extraction (Vision): Tools

Conditioning
Suppresses noise

Background normalization by suppressing uninteresting systematic or patterned

variations

Done by:
gray-scale modification (e.g. trasholding)
(low pass) filtering

Labeling

Determination of the spatial arrangement of the events, i.e. searching for a

structure
Grouping

I dentification of the events by collecting together pixel participating in the same

kind of event
Extracting

Compute a list of properties for each group
Matching (see chapter 5)
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432
Filtering and Edge Detection

» Gaussian Smoothing
» Removes high-frequency noise
» Convolution of intensity image | with G:

1

~
Il
(]
®
~

o R

I

(12
with: G = —

162 4
2

432
Edge Detection

« Ultimate goal of edge detection
» anidealized line drawing.
« Edge contours in the image correspond to important scene contours.

SRS

I S e
/T
«» Edges / s
» Locations where the brightness undergoes a sharp change, ‘
»~ Differentiate one or two times the image ‘%\N\
» Look for places where the magnitude of the derivative islarge. \
> Noise, thusfirst filtering/smoothing required before edge detection £
© R. Siegwart, I. Nourbakhsh © R. Siegwart, I. Nourbakhsh
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Optimal Edge Detection: Canny

» The processing steps
» Convolution of image with the Gaussian function G
» Finding maxima in the derivative

» Canny combines both in one operation
(G®I) =G¢'®1 "

o

(a) A Gaussian ] E] ] ] 4
%

Optimal Edge Detection: Canny 1D example

0
< 40 f
s _ — 0 il N
1e0d E '
1o 103 "Il. iR . |'|
= g Py o './'PI‘\,; \," T BRY: =aaarcs
0 A ] G El T _tdi.] v |J
b =
0 — 4 a .
160 N i
e o Il
b o I
o Fij & Ej T g A et R ey
il

(@ Intensity 1-D profile of anidea step edge.

(b) Intensity profile I(x) of areal edge.

(c) Itsderivativel’ (X).

(d) Theresult of the convolution R(x) = G’ ® I, where G’ isthefirst
derivative of a Gaussian function.
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Optimal Edge Detection:

1-D edge detector can be defined with the following steps:
Convolute theimage | with G’ to obtain R.
Find the absolute value of R.

Mark those peaks |R| that are above some predefined threshold T. The
threshold is chosen to eliminate spurious peaks due to noise.

2D — Two dimensional Gaussian function

b
] (ot e
e \:‘5:%
SEEE R %
e e e
T o
7 ‘\\\tt, \“gc‘:
BN s
S d“g\\t&:”.-z-:, Loess
ST e IPegigesine
S T o tete s
B e et et e ey
oo SLSSES
s s

Go(x,v) = Gg(x)Gg(v) Silx,y) = G'o(x)G(») Ju(x.y) = G'3(y)Gs(x)

Optimal Edge Detection:

Example of Canny edge detection
After nonmaxima suppression

Example

© R. Siegwart, I. Nourbakhsh

Gradient Edge Detectors

IGl=Jri+r; r = B r, = 0~

01 I 0
-1 -1-1 -101
D 2 2

|G|5,/p[+p5 ; Bzatan(])—') =10 0 0 pp= |-101
P 111 —1 0 1]

-1-2-1 -101

|Gl = yfs7 + 55 Bzatan(i—') DS, =10 0 0] s,=1]-202
. 12 1] ~10 1
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Example
Raw image

Filtered
(Sobel)

Thresholding

Nonmaxima -
suppression
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Nonmaxima Suppression

« Output of an edge detector is usually a b/w
image where the pixels with gradient magnitude
above a predefined threshold are black and all
the others are white

» Nonmaxima suppression generates contours
described with only one pixel thinness

©R. Siegwart, I. Nourbakhsh
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Comparison of Edge Detection M ethods

seconds

Canny Canny Sobel Priwall Robuerts
) o)

alyorithm

« Average time required to compute the edge figure of a 780 x 560 pixelsimage.

» Thetimes required to compute an edge image are proportional with the accuracy of
the resulting edge images

©R. Siegwart, I. Nourbakhsh
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Dynamic Thresholding

» Changing illumination
» Constant threshold level in edge detection is not suitable
« Dynamically adapt the threshold level

» consider only the n pixels with the highest gradient magnitude for further
calculation steps.

a 100000 b
#0000
£ 50w

2 0w

20000

o

SR ARSEBEESREERRSBIELEER

gradiont magnitede

(a) Number of pixels with a specific gradient magnitude in the image of Figure 1.2(b).
(b) Same as (a), but with logarithmic scale
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Hough Transform: Straight Edge Extraction

« All points p on a straight-line edge must satisfy y, = m; x, + b; .
« Each point (x,, Y,) that is part of thisline constraints the parameter m;
and b;.
» The Hough transform finds the line (line-parameters m, b) that get most
“votes’ from the edge pixelsin the image.
» Thisisreadlized by four stepts
1. Create a 2D array A [m,b] with axes that tessellate the values of mand b.
2. Initialize the array A to zero.

3. For each edge pixel (x,, Y,) intheimage, loop over all values of mand b
ify, = m; X, + by then Almb]+=1

4. Search cellsin A with largest value. They correspond to extracted straight-
line edge in the image.
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Grouping, Clustering: Assigning Featuresto Features

pixels > featu rem

Connected Component Labeling

= & 0

-
£2

==

=~
W)W
=~

(8] (M) (8] (M) (o8]
ool
B [ [ 7)) () [N

U] O LYWW
ool

Floor Plane Extraction

Vision based identification of traversable
The processing steps
As pre-processing, smooth |; using a Gaussian smoothing operator
Initialize a histogram array H with n intensity values:
for H[il]=0fori=1,...n
For every pixel (x,y) in I¢increment the histogram: H[/,(x, y)] += 1

© R. Siegwart, I. Nourbakhsh

Whole-Image Features

OmniCam

© R. Siegwart, I. Nourbakhsh

I mage Histograms

The processing steps
As pre-processing, smooth (;; using a Gaussian smoothing operator
Initialize H,withnlevels. H[j] = 0 forj = 1,...,n
For every pixel (x,y) inG increment the histogram:  H,[ G,[x, y]] += 1

= fted Histogram [ [= [ || = Hue Histogram
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I mage Finger print Extraction

« Highly distinctive combination of simple features

IZIIIZ] 18] &2 | 1111 & & YBWYONWWLVBEvwwywYBYL (Pe)

SN

BlIEILIZLILINIEL] ] &) .g:'ﬂ & F KLywylvvwywvBywvLvBEVOYN (Pw3)
o =

gbloy

Place x: vwBEWCvwvMyvOBy vy

Rt AN RNE AR AN

Place 1 wwBEvMyCvwwMyMOBywwy

llazielall el eeml |||
Place 2: LvlvwvBynOLvBE vy S
gielllG el &I
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Example:

Probabilistic Line Extraction from Noisy 1D Range Data

o Suppose:

» the segmentation problem has
already been solved,

» regression equations for the
modd fit to the points have a
closed-form solution —which is
the case when fitting straight
lines.

» that the measurement

uncertainties of the data points
are known

© R. Siegwart, I. Nourbakhsh
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Line Extraction

» Estimating alinein the least squares sense. The model parameters (length of
the perpendicular) and (its angle to the abscissa) describe uniquely aline.

« n'measurement pointsin polar coordinates  x; = {p;, &,)
» modeled asrandom variables  x; = (7, 2,)

» Each point isindependently affected by Gaussian noise in both coordinates.

Pr ~ N(loil oé;) (249)

Q;- ~ N( 8 nt éi) (2.50)

© R. Siegwart, I. Nourbakhsh
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Line Extraction

» Task: find theline

xecose + ysing —r =0
where x = pcos(8) ;¥ = psin(8)

2= peosfeosa+ psinfsine—r = 0
peos(f—a)-r=20 (251)
» Thismodel minimizes the orthogonal distances d, of apoint{e, 2, to theline
pieos(f,—a)—r = d,. (252)

» Let Sbe the (unweighted) sum of squared errors.

I

2 2
S:Z:dj = Z(pjcos(ﬁj—oﬂ)—r) (253
I
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Line Extraction

The model parameters{«, ) are now found by solving the nonlinear equation system
— =0 — =0 (2.54)

Suppose each point a known variance of modelling the uncertainty in radial and
angular.
variance is used to determine a weight w, for each single point, e.g.

w, =1 fof. (259

Then, equation (2.53) becomes

G ija.’f = Z:wz.(,ojo::os:(lfi‘j—a)—r)2 (2.56)
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Line Extraction

It can be shown that the solution of (2.54) in the weighted least
square senseis

2. 2 .
w0, sin2d;, - = w00 costsint;
o = Latan2 Z i E“ZZ : (257

2 1
ijpi cos2fl, - ;ZZWJWJ'O;'OJCDS(BE+ ﬁj)
ng,oicos(ﬁf—oc)
=

2%

(2.38)

How the uncertainties of the measurements propagate through
‘the system’ (eg. 2.57, 2.58)7?
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Line Extraction-> Error Propagation Law

T
CAR = FPQCXFPQ’ [2.59)

giventhe 2n x 2n input covariance matrix:

2
Cp 0 o0 0
s {P } _ [eelog) @50
0 Oy 0 wloy)

and the system relationships (2.57) and (2.58). Then by calculating the Jacobian

e Bo Jo da da dee

OF, 57, ~ 07, 56, 90, " 3,

Br or  Or B B B
8P, 8P, " BP, 80, 80, 90,

FPQ S (261}

we can instantly form the error propagation equation () yielding the sought C,
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Feature Extraction: The Simplest Case— Linear Regression

Linear Regression
Yi=a+tpXit g

& iny direction ~N(0,6?)

> ¢, B such that X2 is minimal.

Model for straight lines:

xcos(a) +ysin(a) —r = 0

Model for circles:

(X+x) +(y+y) =1 =0 X
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Feature Extraction: Nonlinear Linear Regression

1) For straight lines

x;cos(a) + y;sin(a) —r = g

in order that Zs,z is minimal:

(’ﬁa_ocz(xi cos(a) +y;sin(a) — r)2

g D (x;cos(a) +y;sin(a) - 1’
T

Pi:(p[; H,)

A measure of the estimate’s uncertainty:
covariance matrix o0 12 2
aa 2 [@‘E)} %
i

i

G, C 2
= Otr] GrrzZ[gr (p)} 0i2
G, G ~LoP; ~
1

o _= COV[A,R]
ar

Apply error propagation law

2) For circles

Anonlinear Ay W
6[‘,
J—Xv

2 2 2 _
(Xi+xc) +(Yi+yc) - =&
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Feature Extraction / Sensory Inter pretation

A mobile robot must be able to determine its relationship to the environment
by sensing and interpreting the measured signals.

A wide variety of sensing technologies are available as we have seenin
previous section.

However, the main difficulty liesin interpreting these data, that is, in
deciding what the sensor signalstell us about the environment.

Choice of sensors (e.g. in-door, out-door, walls, free space ...)
choice of the environment model
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