Autonomous Mobile Robots, Chapter 3

Motion Control (wheeled robots)

* Requirements for Motion Control
» Kinematic / dynamic model of the robot

» Mode of the interaction between the
wheel and the ground

» Definition of required motion ->
speed control, position control

» Control law that satisfies the requirements
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Perception
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Introduction: M obile Robot Kinematics

* Aim
» Description of mechanical behavior of the robot for
design and control
» Similar to robot manipulator kinematics
» However, mobile robots can move unbound with respect to its
environment
0 thereisno direct way to measure the robot’s position

0 Position must be integrated over time

0 Leadsto inaccuracies of the position (motion) estimate
->the number 1 challenge in mobile robotics

» Understanding mobile robot motion starts with under standing wheel
constraints placed on the robots mobility
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Introduction: Kinematics M odel

» Godl:
> establish the robot speed £ =[xy 6 asa function of the wheel speeds?,,
steering angles g, , steering speeds S, and the geometric parameters of the
robot (configuration coordinates).
» forward kinematics Y "o
X t)
&= V(=T (Pre @ B B Prve- ) \
0
» Inverse kinematics

[¢1 (bn ﬂl ﬁm :Bl

» why not

Bl = (%,9,6)

X
Y= (@00 B Bn) = not straight forward
o
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32.1
Representing Robot Position

* Representing to robot within an arbitrary initial frame
> Initial frame:  {X,.,Y } Y
» Robot frame:  {Xg,Yg}

> Robot position: & =[x y 6f e
» Mapping between the two frames !

> &r=RO) =RO)[x y 6] ' "
cosd snd O

R@)=|-snd cosd 0 K X
0 0O 1
0
» Example: Robot aligned with Y, j I— X

X
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3.2.1 3.2.2
Example Forward Kinematic Models
7
1 « Presented on blackboard
cos® sinB® 0 i
R(®) = | _sin® cosd 0
0 0 1
0
T _i_ B
. T, 010 X J."'. > X"
& = R(E)éz =100y T |+
0 01[|6 0
3.2.3 3.2.3
Wheel Kinematic Constraints:

Wheel Kinematic Constraints: Assumptions Fixed Standard Wheel

Y Yr )

1 A [sin(@+ ) —cosla+p) (~1)cosp]RO)E-rep=0

- YR . . s
+ Movement on a horizontal plane X [cosl@+ B) sin(a+p) Isinp]RO) =0
* Point contact of the wheels X
* Wheels not deformable @-r /
) PN 0 B
- Purerolling d 77777 | /\/ .
» v = 0at contact point ‘ ] S

- No slipping, skidding or sliding ‘ . i

* No friction for rotation around contact point
« Steering axes orthogonal to the surface
» Wheels connected by rigid frame (chassis)
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Example

[sin(e+p) —cosla+p) (~1)cosp|RO)E—rep=0
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Wheel Kinematic Constraints:

Steered Standard Whese!

KR [sin(@+B) —cosle+p) (~1)cosp]RO)E-rép=0

cosla+ ) sin(e+B) 1snBlRO)E =0 . . :
[cos(er+ p) sinla+§) 1sin SIRO): [cos@+ ) sinfa+§) 1snFIROY; =0
 Suppose that the wheel A isin positionsuchthat o« =0andp =0
» Thiswould place the contact point of the wheel on X, with the plane f B (t)
of the wheel oriented parallel to Y,. If 6 = 0, then this sliding >
constraint reduces to: / P -~
Robor chassis _ Q&<
100X X I A v
[1oollotolp| =[100]|p] =0 « |
. . I
0016 0 P | > Xr
323 323
Wheel Kinematic Constraints: Wheel Kinematic Constraints:
Castor Whesel Swedish Wheel
ZR [sin(@+p) —cosla+pB) (-1)cosp]R(O)E-r@p=0 Yz [sin(@+B+1) —cosla+p+y) (~1)cos(B+7)|RO) —r@pcosy=0
A
_ _ . . coda+pB+y) snla+p+y) lsn(p+y)|RO) -1, psiny—r, o, =0
[cosla+ ) sin(a+p) d+lsinpg]RO)E +dB=0 oo ) snl ) 1sn(g )RR,
!
B®) £ /B B -
~ 1 /\[} -
Robot chassis ~~__{ = Robot chassis | e
4 flebotchassis 1 0, r _hobot chassis | :
(0 : ; o |
I
P 1 -’XR P I -"XR
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Whed Kinematic Constraints; — Whed Kinematic Constraints; —
Swedish Whesel Spherical Whesl

ZR [sin(e+p) —cosla+p) (~1)cosp]RO)E-rp=0
[cosa@+ B) sin(a+pB) Isnp]RO) =0
!
/
N
| Robot chassis (4 L]
o, r
[ Vy
g
P | > Xr
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Robot Kinematic Constraints

+ Given arobot with M wheels
» each wheel imposes zero or more constraints on the robot motion
» only fixed and steerable standard wheels impose constraints

» What is the maneuverability of arobot considering a combination of

different wheels?

* Suppose we have atotal of N=N; + N, standard wheels
» We can devel op the equations for the constraints in matrix forms:
> Rolling

LBIROE +1,p=0  p(0)= f’f “)}

ps(t)
Ny +Ng kL

Jis(Bs)
Nt +Ng X3
» Lateral movement

Ci(B)RO)E, =0 Ci(Bo)

N;+Ng k3

XA =L G }

Jl(ﬂs)=£ 1 } J, =diag(r;- -

')
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Example: Differential Drive Robot

* Presented on blackboard
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Example: Omnidirectional Robot

 Presented on blackboard
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M obile Robot Maneuver ability

» The maneuverability of a mobile robot is the combination
» of the mobility available based on the diding constraints
» plus additional freedom contributed by the steering

» Three wheelsis sufficient for static stability
» additional wheels need to be synchronized
» thisis also the case for some arrangements with three wheels

* It can be derived using the equation seen before
» Degree of mobility Sm
» Degree of steerability Js
> Robots maneuverability 9w =Jm +Js
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33.1
Mobile Robot Maneuver ability: Degree of M obility

» To avoid any lateral dlip the motion vector R(9)¢&, has to satisfy the
following constraints:

CR(O)S =0
| C(B) { o }
Cis(fo)RO)é =0 Cis(45)
* Mathematically:
> R(0)& must belong to the null space of the projection matrix Ci(Bs)
» Null space of C,(,) isthe space N such that for any vector nin N
Cl(ﬁs) -n=0
» Geometrically this can be shown by the Instantaneous Center of Rotation

(ICR)
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Mobile Robot Maneuver ability: I nstantaneous Center of Rotation

» Ackermann Steering Bicycle

¥
ICR ICR
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Mobile Robot Maneuver ability: More on Degree of M obility

* Robot chassis kinematicsis afunction of the set of independent
constraints  rank[C,(f;)]

> the greater the rank of C,(5,) the more constrained is the mobility

* Mathematically
Sm =dimN[Cy(B5)]=3-rank[C,(5)]

0 no standard wheels rank[C,(Ss)]=0
o all direction constrained  rank[C, (4,)]=3

* Examples:
» Unicycle: One single fixed standard wheel
» Differential drive: Two fixed standard wheels

0<rank[Cy(B5)]<3

3.3.2
Mobile Robot Maneuver ability: Degree of Steerability

* Indirect degree of motion 5, = rank[C,(5s)]

» The particular orientation at any instant imposes a kinematic constraint

» However, the ability to change that orientation can lead additional
degree of maneuverability

* Rangeof s5,: 0<54<2

* Examples:
» one steered wheel: Tricycle
» two steered whedl's: No fixed standard wheel

» car (Ackermann steering): N; = 2, N=2 -> common axle
0 wheelson same axle
0 wheels on different axles
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M obile Robot Maneuver ability: Robot Maneuver ability

* Degree of Maneuverability
Opm =0m+ 5

» Two robots with same &,, are not necessarily equal
» Example: Differential drive and Tricycle (next dlide)

» For any robot with &y, =2 the ICR is always constrained
tolieonaline

» For any robot with &, =3 the ICRis not constrained an
can be set to any point on the plane

* The Synchro Drive example: Oy =0m+0s=1+1=2
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Mobile Robot Maneuver ability: Wheel Configurations

* Differentia Drive Tricycle
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Five Basic Types of Three-Wheel Configurations

[¥4
Omnidirectional Differential Omni-Steer Tricycle Two-Steer
Gy =3 8y =2 Gy =3 Gy =2 8y =3
6”|' =3 a‘ﬂf =2 (j‘ﬂﬂ =2 5}" =I é‘”f =l’
& 0 & -0 & - & =i 5 =2
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333
Synchro Drive

Sy =0 +0s=1+1=2

Steering pulley
Direction of motion

Wheel steering axis
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3.4.1
M obile Robot Workspace: Degr ees of Freedom

» Maneuverability is equivaent to the vehicle' s degree of freedom
(DOF)
* But what is the degree of vehicle' s freedom in its environment?
» Car example
» Workspace

» how the vehicle is able to move between different configuration in its
workspace?

* The robot’ s independently achievable velocities
» = differentiable degrees of freedom (DDOF) = Jp,
~ Bicycle: 5, =6,,+5s=1+1 DDOF =1, DOF=3
» Omni Drive: 6y =6,+5s=1+1 DDOF=3; DOF=3
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M obile Robot Workspace: Degrees of Freedom, Holonomy

* DOF degrees of freedom:
» Rabots ability to achieve various poses

» DDOF differentiable degrees of freedom:
> Robots ability to achieve various path

DDOF <6, < DOF

» Holonomic Robots

» A holonomic kinematic constraint can be expressed a an explicit function
of position variables only

» A non-holonomic constraint requires a different relationship, such asthe
derivative of a position variable

> Fixed and steered standard wheel s impose non-holonomic constraints
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M obile Robot Workspace:
Examples of Holonomic Robots Path / Trajectory Considerations: Omnidirectional Drive

Y,
A

X, 50
A

L y(t)

== A x)
rog 0(1)

-t/ [s]
) / 2
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Path / Trajectory Consider ations. Two-Steer Beyond Basic Kinematics
Y
A f Bs'l’ BSZ
60l Bsi
—60":;—"/—‘ r\‘-—'&;
x, 0
I
— a3
7 o)
o3 T 2 3 4 5 1/
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Motion Control (kinematic control)

* The objective of akinematic controller isto follow atragectory
described by its position and/or velocity profiles as function of time.

* Motion control is not straight forward because mobile robots are non-
holonomic systems.

* However, it has been studied by various research groups and some
adequate solutions for (kinematic) motion control of a mobile robot
system are available.

* Most controllers are not considering the dynamics of the system
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Motion Control: Open Loop Control

* trgjectory (path) divided in motion segments of
clearly defined shape:

» straight lines and segments of a circle.
« control problem:

> pre-compute a smooth trajectory
based on line and circle segments

+ Disadvantages:
> Itisnot at all an easy task to pre-compute
afeasible trajectory

> limitations and constraints of the robots
velocities and accelerations

» does not adapt or correct the trajectory if dynamical X
changes of the environment occur.

» Theresulting trajectories are usually not smooth

N goal
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Motion Control: Feedback Control, Problem Statement

 Find a control matrix K, if
exists

I'(21 k22 k23

with k=k(t,€)
* such that the control of v(t)
and a(t)

R
X

v(t) | s
L)(t)}—K-e—K Z

e drives the error e to zero.
lime(t)=0

t—oo
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Motion Control:
Kinematic Position Control

The kinematic of adifferential drive mobile
robot described in theinitia frame{x,, y,, 6
isgiven by,

% cosfé O
. \Y;
y|=|sné O{ }
. 10}
o 0 1
where and what are the linear velocitiesin

the direction of the x, and y, of theinitial
frame.

Let o denote the angle between the x; axis
of the robots reference frame and the vector
connecting the center of the axle of the
wheels with the final position.
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Kinematic Position Control: Coordinates Transfor mation

Coordinates transformation into polar coordinates
with itsorigin at goal position:

p = ,Jsz +A_,1:‘2

o = —0+atan2(Ay, Ax)

B=-0-cu
System description, in the new polar coordinates
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Kinematic Position Control: Remarks

* The coordinates transformation is not defined at x =y = 0; asin such
a point the determinant of the Jacobian matrix of the transformation
isnot defined, i.e. it is unbounded

* For ae [, theforward direction of the robot points toward
thegoal, for « e 7, itisthe backward direction.

P —cosa 0 o cosa Y By properly defining the forward direction of the robot at itsinitial
al = | 3% V} al — |3 H configuration, it isalways possibleto have o e 7 at t=0. However
P @ : P . this does not mean that o. remainsin |, for all timet.
7@ 0 w 0
Y P
for I, = (f;—t TEE:I for I, = (-m -n/2]u(n/2, ]
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3.6.2 3.6.2
Kinematic Position Control: The Control Law Kinematic Position Control: Resulting Path
© It Can be ShOWﬂ, that Wlth e ‘ ‘ Robot trajectory
vV = kpp w = ko,a+kBB a0t B
the feedback controlled system ) N
20 N S/ 5 >
P —kypeosa o 4o ’
a| = |kysino—k,o— kB ol :: N
,kp sin o ol / . \ il /N .
- will drivetherobot to (p,a.8)=(000) N = -~
« The control signal v has always constant sign, 4 S|
> the direction of movement is kept positive or negative during movement I Y R “ o
» parking maneuver is performed always in the most natural way and
without ever inverting its motion. /,_-f
-60 -40 -20 X({mml 20 40 B0
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Kinematic Position Control: Stability I ssue

* |t can further be shown, that the closed loop control systemislocally
exponentially stable if

kp>0 : kB<O : ka—kp>0

* Proof:
for small x—> cosx =1, sinx =X
pl |k, 0 01fp —k, 0 0
Gl = | 0 —(kg—ky) —kp| |t A =10 —(kyk,) —kg
: 0 —k o [1B 0 —k 0

p P
and the characteristic polynomial of the matrix A of all roots

(A + k) (A + ko — k) — K k)
have negative real parts.
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Mobile Robot Kinematics: Non-Holonomic Systems

Wi X1, Y1
¥a s
$1=S,; S1rR=SoRr 1 S1L=SaL /
but: X; Z X, ;¥; ZY, SIL (s SR
2L X2, V2
5
( SR
. 4
* Non-holonomic systems %

» differential equations are not integrable to the final position.

» the measure of the traveled distance of each wheel is not sufficient to
calculate the final position of the robot. One has also to know how this
movement was executed as a function of time.
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Non-Holonomic Systems: Mathematical I nter pretation

< A mobile robot is running along a trgjectory s(t). Y
At every instant of the movement its velocity v(t) is: v
S OX .
v(t) =a— = a—cos@+@sm0
ot ot ot

ds=dxcoséd +dysing

(t)

X,
* Function v(t) is said to be integrable (holonomic) if there exists atrajectory function s(t) '
that can be described by the values x, y, and g only.

s=9(Xx,Y,0)

o°s 9% | 9°s 9°s | 9°s  0%s
X3y Oyox ' oxo0 06ox | oyol oeoy
Condition for integrable function

édy+§d9
oy 00

» Thisisthe caseif

« With s= s(x,y,6) we get for ds ds= ?dx+
X
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Non-Holonomic Systems: The M obile Robot Example

« In the case of a mobile robot where
ds=dxcosé +dysinéd

+ and by comparing the equation above with
ds= B+ By + B g
OX 06

oy
» wefind
@zcosé ; @zsine ; E=0
OX oy 00
« Condition for an integrable (holonomic) function:
o’s 0°s  d’s  0°s d’s  0°s

oxoy  oyox | oxo0 odox | oyol ooy

» the second (-sin6=0) and third (cosé=0) termin eguation do not hold!
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