Locomotion Concepts

- Concepts
- Legged Locomotion
- Wheeled Locomotion

© R. Siegwart, I. Nourbakhsh

Locomotion Concepts: Principles Found in Nature

Type of motion	Resistance to moti	on Basic kinematics of motion
Flow in a Channel	Hydrodynamic for	rces Eddies
Crawl	Friction forces	
Sliding	Friction forces	Transverse vibration
Running	Loss of kinetic end	Oscillatory movement of a multi-link pendulum
Jumping A 4	Loss of kinetic end	Oscillatory movement of a multi-link pendulum
Walking	Gravitational force	Rolling of a polygon (see figure 2.2)

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 2

Locomotion Concepts

- Concepts found in nature
 - *▶* difficult to imitate technically
- Most technical systems use wheels or caterpillars
- Rolling is most efficient, but not found in nature
 - Nature never invented the wheel!
- However, the movement of a walking biped is close to rolling

1

Autonomous Mobile Robots, Chapter 2

m ow at

Walking of a Biped

> not to fare from real rolling. steve_angle.qt

- rolling of a polygon with side length equal to the length of the step.
- the smaller the step gets, the more the polygon tends to a circle (wheel).
- However, fully rotating joint was not developed in nature.

© R. Siegwart, I. Nourbakhsh

Walking or rolling?

- number of actuators
- structural complexity
- control expense
- energy efficient
 - > terrain (flat ground, soft ground, climbing..)
- movement of the involved masses
 - walking / running includes up and down movement of COG
 - > some extra losses

RoboTrac, a hybrid wheel-leg vehicle

Autonomous Mobile Robots, Chapter 2

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 2

2.1.1

Characterization of locomotion concept

- Locomotion
 - > physical interaction between the vehicle and its environment.
- Locomotion is concerned with *interaction forces*, and the *mechanisms* and *actuators* that generate them.
- The most important issues in locomotion are:
- stability
 - > number of contact points
 - > center of gravity
 - > static/dynamic stabilization
 - > inclination of terrain

- characteristics of contact
 - > contact point or contact area
 - > angle of contact
 - > friction
- type of environment
 - > structure
 - medium (water, air, soft or hard ground)

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 2

2.2.1

Mobile Robots with legs (walking machines)

- The fewer legs the more complicated becomes locomotion
 - > stability, at least three legs are required for static stability
- During walking some legs are lifted
 - thus loosing stability?
- For static walking at least 6 legs are required
 - babies have to learn for quite a while until they are able to stand or even walk on their two legs.

Number of Joints of Each Leg (DOF: degrees of freedom)

- A minimum of two DOF is required to move a leg forward
 - *▶ a* lift *and a* swing *motion*.
 - > sliding free motion in more then only one direction not possible
- Three DOF for each leg in most cases
- Fourth DOF for the ankle joint
 - > might improve walking
 - however, additional joint (DOF) increase the complexity of the design and especially of the locomotion control.

© R. Siegwart, I. Nourbakhsh

Examples of Legs with 3 DOF

Autonomous Mobile Robots, Chapter 2

2.2.1

The number of possible gaits

- The gait is characterized as the sequence of lift and release events of the individual legs
 - it depends on the number of legs.
 - > the number of possible events N for a walking machine with k legs is:

$$N = (2k-1)!$$

• For a biped walker (k=2) the number of possible events N is:

$$N = (2k-1)! = 3! = 3 \cdot 2 \cdot 1 = 6$$

- > The 6 different events are: lift right leg / lift left leg / release right leg / release left leg / lift both legs together / release both legs together
- For a robot with 6 legs (hexapod) N is already

$$N = 11! = 39.916.800$$

Autonomous Mobile Robots, Chapter 2

2.2.1

Most Obvious Gaits with 4 legs

Changeover Walking

Galloping

© R. Siegwart, I. Nourbakhsh

Most Obvious Gait with 6 legs (static)

© R. Siegwart, I. Nourbakhsh

2.2.2

Examples of Walking Machines

• No industrial applications up to date, but a popular research field

• For an excellent overview please see: http://www.walking-machines.org/

The Hopping Machine

Autonomous Mobile Robots, Chapter 2

Humanoid Robots

• P2 from Honda, Japan

➤ Maximum Speed: 2 km/h

> Autonomy: 15 min

Weight: 210 kg

➤ Height: 1.82 m

➤ Leg DOF: 2*6

➤ Arm DOF: 2*7

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 2

Bipedal Robots

• Leg Laboratory from MIT

> Spring Flamingo the bipedal running machine

"Troody" Dinosaur like robe

"M2" Humanoid robot

more infos: http://www.ai.mit.edu/projects/leglab/

2.2.2

Autonomous Mobile Robots, Chapter 2

2.2.2

Humanoid Robots

• Wabian build at Waseda University in Japan

Weight: 107 kg
Height: 1.66 m
DOF in total: 43

Walking with Three Legs

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 2

2.2.2

Walking Robots with Four Legs (Quadruped)

• Artificial Dog Aibo from Sony, Japan

CMPack '03 vs. Yellow Jackets

R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 2

2.2

Walking Robots with Four Legs (Quadruped)

• Titan VIII, a quadruped robot, Tokyo Institute of Technology

Weight: 19 kg→ Height: 0.25 m

> DOF: 4*3

© R. Siegwart, I. Nourbakhsh

Walking Robots with Four Legs (Quadruped)

Centre for Intelligent Machines

Ambulatory Robotics Lab

McGill University

© R. Siegwart, I. Nourbakhsh

Walking Robots with Six Legs (Hexapod)

- Most popular because static stable walking possible
- The human guided hexapod of Ohio State University
 - ➤ Maximum Speed: 2.3 m/s
 - ➤ *Weight: 3.2 t*
 - ➤ Height: 3 m
 - ➤ *Length: 5.2 m*
 - No. of legs: 6
 - *▶ DOF in total: 6*3*

Autonomous Mobile Robots, Chapter 2

2.2.2

Walking Robots with Six Legs (Hexapod)

 Lauron II, University of Karlsruhe

- ➤ Weight: 6 kg
- Height: 0.3 m
- ▶ Length: 0.7 m
- No. of legs: 6
- DOF in total: 6*3
- Power Consumption: 10 W

Autonomous Mobile Robots, Chapter 2

2.3

Mobile Robots with Wheels

- Wheels are the most appropriate solution for most applications
- Three wheels are sufficient and to guarantee stability
- With more than three wheels a flexible suspension is required
- Selection of wheels depends on the application

2.3.1

Autonomous Mobile Robots, Chapter 2

The Four Basic Wheels Types

- a) Standard wheel: Two degrees of freedom; rotation around the (motorized) wheel axle and the contact point
- b) Castor wheel: Three degrees of freedom; rotation around the wheel axle, the contact point and the castor axle

The Four Basic Wheels Types

- c) Swedish wheel: Three degrees of freedom; rotation around the (motorized) wheel axle, around the rollers and around the contact point
- d) Ball or spherical wheel:Suspension technically not solved

Autonomous Mobile Robots, Chapter 2

2.3.1

Characteristics of Wheeled Robots and Vehicles

- Stability of a vehicle is be guaranteed with 3 wheels
 - > center of gravity is within the triangle with is formed by the ground contact point of the wheels.
- Stability is improved by 4 and more wheel
 - > however, this arrangements are hyperstatic and require a flexible suspension system.
- Bigger wheels allow to overcome higher obstacles
 - but they require higher torque or reductions in the gear box.
- Most arrangements are non-holonomic (see chapter 3)
 - > require high control effort
- Combining actuation and steering on one wheel makes the design complex and adds additional errors for odometry.

Autonomous Mobile Robots, Chapter 2

2.3.1

Different Arrangements of Wheels I

Two wheels

• Three wheels

Omnidirectional Drive

Synchro Drive

2.3.1

Autonomous Mobile Robots, Chapter 2

2.3.2

Different Arrangements of Wheels II

Four wheels

© R. Siegwart, I. Nourbakhsh

Cye, a Two Wheel Differential Drive Robot

- Cye, a commercially available domestic robot that can vacuum and make deliveries in the home, is built by Probotics, Inc.
- http://www.personalrobots.com/

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 2

ROOMBA

Cliff sensors stop Roomba from falling down stairs

http://www.irobot.com

Autonomous Mobile Robots, Chapter 2

Synchro Drive

- All wheels are actuated synchronously by one motor
 - defines the speed of the vehicle
- All wheels steered synchronously by a second motor
 - > sets the heading of the vehicle
- The orientation in space of the robot frame will always remain the same
 - It is therefore not possible to control the orientation of the robot frame.

© R. Siegwart, I. Nourbakhsh

Tribolo, Omnidirectional Drive with 3 Spheric Wheels

© R. Siegwart, I. Nourbakhsh

Uranus, CMU: Omnidirectional Drive with 4 Wheels

- Movement in the plane has 3 DOF
 - thus only three wheels can be independently controlled

It might be better to arrange three swedish wheels in a triangle

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 2

2.3.2

Caterpillar

• The NANOKHOD II, developed by von Hoerner & Sulger GmbH and Max Planck Institute, Mainz for European Space Agency (ESA) will probably go to Mars Autonomous Mobile Robots, Chapter 2

2.3.2

Stepping / Walking with Wheels

 SpaceCat, and microrover for Mars, developed by Mecanex Sa and EPFL for the European Space Agency (ESA)

SHRIMP, a Mobile Robot with Excellent Climbing Abilities

- Objective
 - Passive locomotion concept for rough terrain
- Results: The Shrimp
 - > 6 wheels
 - o one fixed wheel in the rear
 - o two boogies on each side
 - o one front wheel with spring suspension
 - robot sizing around 60 cm in length and 20 cm in height
 - highly stable in rough terrain
 - > overcomes obstacles up to 2 times its wheel diameter

© R. Siegwart, I. Nourbakhsh

The SHRIMP Adapts Optimally to Rough Terrain

Autonomous Mobile Robots, Chapter 2

Autonomous Mobile Robots, Chapter 2

2.3.2

The Personal Rover

