
1

Autonomous Mobile Robots

Lecture 06: Feedback Control

Lecture is based on material from Robotic Explorations: A Hands-on Introduction to Engineering, Fred Martin, Prentice Hall, 2001.

Copyright Prentice Hall, 2001 2

Outline

• Serial Communication and Data Collection

• Simple Feedback Control

• Proportional-Derivative Control

• PID Control from MatlabTM Tutorial

Matlab is trademark of MathWorks, Inc.

2

Copyright Prentice Hall, 2001 3

• Serial Communication and Data Collection: Read Appendix C
of Robotic Explorations (textbook)

• Control: Read Chapter 5 of Robotic Explorations (textbook)

• Control History: “A Brief History of Feedback Control” from
Chapter 1: Introduction to Modern Control Theory, in:
F.L. Lewis, Applied Optimal Control and Estimation, Prentice-
Hall, 1992. Web page: http://www.theorem.net/lewis1.html

• MatlabTM: Become familiar with Matlab for plotting and PID
control: Read the whole Matlab Basics and PID Tutorial on the
Control Tutorials for Matlab web site:
http://www.engin.umich.edu/group/ctm/

Homework #6

Copyright Prentice Hall, 2001 4

Serial Communication and Data Collection
• How to collect data on the Handy Board and upload it to a host computer for

processing, using the IC environment.

• There are at least two ways upload sensor data from the Handy Board:

• Sensor data is printed to serial line in real time

Ideal for when data does not need to be sampled too quickly, since sampling rate
is limited by the serial transfer speed

or when the amount of data being collected is so great as to exceed the Handy
Board’s memory

• Sensor data is collected & stored in HB’s memory and later uploaded to serial
line

Best for capturing a short burst of rapidly changing data

or when it is desired to leave the Handy Board in a remote location for the data
collection process

3

Copyright Prentice Hall, 2001 5

Serial Communication and Data Collection

• IC interacts with HB via low-level protocol that allows it to do things like write
to/from HB’s memory while HB is executing IC programs

– The runtime system resident on HB responds to this protocol at all times

– Because of this, characters cannot simply be sent to the HB’s serial line

• Solution: temporarily disable runtime system’s responses to serial activity

– From the host computer side, it will appear to IC that HB is not connected,
because it will no longer respond to the built-in serial protocol

• Then, writing to the serial line is done by interacting with built-in 6811 serial port
registers

– Serial Communications Data Register (SCDR) is located at address 0x102f

• If data is stored to this register, the 6811 transmits it as serial output; when a
serial character is received, it is retrieved by reading from the same register

– Serial Communications Status Register (SCSR) is located at address 0x102e

• Bits in this register indicate when the serial port is busy (e.g., whether it is in
the middle of receiving or transmitting a character)

• IC library file: serialio.c

– Wrapper functions for interacting with serial port

Serial Line Interaction

Copyright Prentice Hall, 2001 6

Serial Communication and Data Collection

• Terminal emulator program: used for
receiving serially-transmitted data

• Test program for establishing a connection
between the HB and a terminal emulator on
the host computer

• Load serxmit.c serialio.c

• disable_pcode serial(): so that HB does not
interpret any accidental characters that might
be sent from the host computer

• Infinite loop:
– Prints a message to the LCD screen telling the

user to press the Start button

– Calls the library function start_press(), which
waits for the Start button to be pressed

– Transmits the 96 printable characters of the
ASCII 1 character set, beginning with code 32,
a space, and ending with code 127, a tilde

• To restart HB in normal mode: hold down
Start button while turning it on

Connecting to a Terminal Program

/* serxmit.c
Each time start button is pressed, transmits
the 96-character ASCII set */
void main()
{
 int i;
 disable_pcode_serial();
 while (1) {
 printf("Press Start button to begin\n");
 start_press();
 printf("Transmitting...\n");
 for (i= 32; i< 128; i++)
 serial_putchar(i);
 }
}

4

Copyright Prentice Hall, 2001 7

Serial Communication and Data Collection

• IC library file printdec.c provides printdec(), which
takes an integer as input and prints its value as a decimal
number over the serial line

• Example: analogpr.c program to continuously print
value of analog sensor 0 to serial line

– After calling printdec() to print the sensor value,
the program outputs the values 10 and 13 to the
serial line

– This is done using serial putchar() so that the data
is sent as control characters. When interpreted by
the terminal emulator, the 10 causes a line feed and
the 13 causes a carriage return.

– msleep() function in the inner loop of the display
routine slows down the rate at which the HB
broadcasts the sensor data to allow terminal
emulator program to keep up on its screen display.

– Sensor data is continuously displayed on the host
computer screen

Printing to Serial Line

/* analogpr.c
requires printdec.c, serialio.c */
void main()
{
 disable_pcode_serial();
 while (1) {
 printdec(analog(0));
 serial_putchar(10);
 serial_putchar(13);
/* wait 0.1 sec between each print */
 msleep(100L);
 }
}

Copyright Prentice Hall, 2001 8

Serial Communication and Data Collection
Capturing Data

• For quickly changing data, the final piece
of the puzzle is storing sensor data in the
HB’s memory for later printing to the serial
line

• This allows a much faster capture rate
since the speed is limited only by the speed
of IC, rather than the relatively slow serial
communications rate

• datacoll.c: IC program for capturing data

– data[] array of 1000 elements
– main() allows user to trigger data-
collection and data-dump modes by
pressing the Start button

/* datacoll.c
requires printdec.c, serialio.c */
int SAMPLES=1000;
char data[1000];
void main()
{
 disable_pcode_serial();
 printf("press Start to collect data\n");
 start_press();
 collect_data();
 beep();
 printf("press Start to dump data\n");
 start_press();
 dump_data();
 beep();
 printf("done.\n");
}

5

Copyright Prentice Hall, 2001 9

Serial Communication and Data Collection
Capturing Data

void collect_data()
{
 int i;
 for (i= 0; i< SAMPLES; i++) {
 data[i]= analog(0);
/* to slow down capture rate, add msleep
here */
 }
}
void dump_data()
{
 int i;
 for (i= 0; i< SAMPLES; i++) {
 printdec(data[i]);
 serial_putchar(10); /* line feed */
 serial_putchar(13); /* carriage return */
 }
}

• collect_data() iterates through the
elements of the array, storing a
successive data sample in each one
(takes 2 sec - 500 samples/sec - may
slow down)

• dump_data() outputs the data stored
in the array to the serial line, using the
line-feed/ carriage-return technique

• Save data; load into spreadsheet
program for graphing and analysis

Copyright Prentice Hall, 2001 10

Simple Feedback Control
• Goal: make error signal go to zero

• Example: Home Heating system

– Thermostat measures room
temperature, determines if air
temperature is too cold or too
hot, turns on/off furnace

– Thermostat setting adjusted
manually

– Furnace is binary heat source:
on/off

– Delay in air heating up and
cooling off

– Air temperature oscillates
around setpoint

• Compare actual room temperature with
desired temperature, which gives error
signal
• Furnace is amplifier
• Artifact/Plant is house, which receives
energy from the furnace
• Feedback is temperature measurement

6

Copyright Prentice Hall, 2001 11

Simple Feedback Control

• HandyBug with bend sensor or
reflective IR sensor

• HandyBug turns towards wall if
distance sensor indicates too far
away; turns away from wall if too
close

• Single threshold for “too far” and
“too close” = goal variable

• Keep track of distance from wall
during task = data[] vector

• Write data to serial line =
dump_data routine

• Manually set wall-sensor threshold
= calibrate routine

• Requires serialio.c, printdec.c

Wall Following

HandyBug design is equipped with a bend
sensor “outrigger,” enabling it to detect its
distance from the wall. The closer to the
wall, more the sensor is flexed. This
increases its resistance, and a greater value
is detected by HandyBug’s sensor circuitry.

Copyright Prentice Hall, 2001 12

Simple Feedback Control
Wall Following

/* wallfol1.c: threshold-based wall follower
with data collection */
int LEFT_MOTOR= 0; /* motor and sensor ports */
int RIGHT_MOTOR= 3;
int LEFT_WALL= 0;
persistent int goal; /* wall conditions */
persistent int data[1000]; /* data capture */
persistent int ix;

void calibrate() {
while (1) {
 int wall= analog(LEFT_WALL);
 printf("goal is %d; wall is %d\n", goal, wall);
 if (start_button()) {
 goal= wall; beep();
 }
 if (stop_button()) {
 printf("Set goal to %d\n", goal);
 beep(); sleep(0.5); break;
 }
 msleep(50L); /* give a pause for the display */
}
}

void main() {
 calibrate();
 ix= 0;
 while (1) {
 int wall= analog(LEFT_WALL);
 printf("goal is %d; wall is %d\n", goal, wall);
 if (wall < goal) left(); /* too far from wall -- turn in */
 else right(); /* turn away from wall */
 data[ix++]= wall; /* take data sample */
 msleep(100L); /* 10 iterations per second */
 }
}

void left() {
motor(RIGHT_MOTOR, 100);
motor(LEFT_MOTOR, 0);
}

void right() {
motor(LEFT_MOTOR, 100);
motor(RIGHT_MOTOR, 0);
}

Hard turns

7

Copyright Prentice Hall, 2001 13

Simple Feedback Control
Wall Following

void dump_data() {
int i;
disable_pcode_serial();
printf("Press START to send data...\n");
start_press();
for (i=0; i< ix; i++) {
 printdec(data[i]);
 serial_putchar(10); serial_putchar(13);
 }
printf("Done sending data.\n");
beep();
}

Results with bend sensor:

• HandyBug oscillates around
setpoint goal value

• Never goes straight

Copyright Prentice Hall, 2001 14

Simple Feedback Control
Wall Following

• Gentle Turning Algorithm:

• Swings less abrupt

• HandyBug completes run in 16
sec (vs. 19 sec in hard turn version)
for same length course

• Exercise: try a 3-state algorithm: use
two thresholds that will allow HandyBug
to either turn left, go straight or turn right

void left() {
motor(RIGHT_MOTOR, 100);
motor(LEFT_MOTOR, 50);
}

void right() {
motor(LEFT_MOTOR, 100);
motor(RIGHT_MOTOR, 50);
}

8

Copyright Prentice Hall, 2001 15

Proportional-Derivative Control
Proportional Control

• Control algorithm generates a stronger response the
farther away the system is from the goal state — response
of control algorithm is proportional to amount of error

• Test system: experiment with proportional control and
proportional-derivative control

– Control rotational position of LEGO wheel

– Will vary power to motor, i.e., motor speed

• Load shaft encoder driver:

load qencdr10.icb

• Test shaft encoder:

encoder10_counts= 0;

while (1) { printf("%d\n", encoder10_counts); msleep(50L);}

The proportional-derivative control
test system includes a dc motor
driving a two-stage gear reduction,
and a large LEGO wheel which
gives the system a fair bit of
momentum (load on the system). At
the middle stage of the gearing, a
quadrature-based shaft encoder
keeps track of the shaft position.

Copyright Prentice Hall, 2001 16

Proportional-Derivative Control
Proportional Control

• Turn on motor, wait, turn it off, and then print out the encoder reading (6-hole pulley wheel gives 24
counts/revolution on encoder):

{encoder10_counts=0; motor(0, 100); msleep(100L); off(0); msleep(500L); printf("%d\n", encoder10_counts);}

• Proportional Error Controller: Set the encoder counter to 0, and then write an infinite loop to
repeatedly set the motor speed to the difference between a desired position and actual position:

{encoder10_counts= 0; while (1) {motor(0, 100 - encoder10_counts);}}

• When the program starts to run, the difference between the desired position (setpoint =100) and the
actual position (0) is 100, so the motor turns on full speed, driving the wheel toward the desired
position. As it starts going, the error becomes progressively smaller. When it’s halfway, at position 50,
the error is only 50, so at that point the motor goes at 50% of full power. When it arrives at the
intended position of 100, the error is zero, and the motor is off.

• Proportional Gain (ratio between error and power): Instead of a one-to-one ratio between error
counts and motor power percentage, modify the controller so it multiplies the error value by 5:

{encoder10_counts= 0; while (1) {motor(0, 5 * (100 -encoder10_counts));}}

• Response should feel much “snappier.” The wheel should reach the setpoint position faster, and it
should resist being turned away from it much more aggressively.

9

Copyright Prentice Hall, 2001 17

Proportional-Derivative Control
Proportional Control

• Overshoot: when the system goes beyond its setpoint and
has to change direction before stabilizing on it. For the test
system of a LEGO wheel turning in space, overshoot doesn’t
seem to be much of a problem, but imagine if the system
were a robot arm moving to a particular position. If it went
beyond the position on its way getting there, it could have
collided with some object just beyond the setpoint position.

• Oscillations: are related to overshoot. After the system
goes beyond its setpoint, when it corrects and drives the
other way it can “overshoot” in the other direction as well.
Then the phenomenon repeats and one sees the system going
back and forth around the setpoint, in a nervous or jittery
manner.

• Serious concern to system designer: minimize both
overshoot and oscillation, but provide adequate system
response to changes in setpoints.

void collect_data()
{
 int i, power, counts;
 for (i= 0; i< SAMPLES;) {
 counts= encoder10_counts;
 power= pgain * (0 - counts);
 motor(0, power);
 data[i++]= counts;
 data[i++]= power;
 }
}

• pgain is proportional error gain,
units are conversion between error
counts and percentage of full power,
e.g., gain of 10 means 10-count error
results in a full power action.
• Power represents % full power
calculated by control function
• Position is actual encoder counts.

Copyright Prentice Hall, 2001 18

Proportional-Derivative Control
Proportional Control

Pgain = 10

Pgain = 20

• Data taken every 0.2 seconds of real time. System
is driven from 100 counts to 0 counts

• Pgain=10: Full-power command as wheel heads
toward setpoint.

– When position within 10 counts of zero, power
command began to fall off.
– System overshot the zero point, and had to turn
around
– Offset Error: System did not stabilize at the goal.
From around the 1.2 second mark onward, the
position was fixed at a count of 1. This generated a
power command of 10%, which was too small to
activate the motor.

• Pgain=20: should ameliorate the offset problem,
since the same static error will result in a higher
power command

– Offset error is solved
– Another problem: the beginnings of an oscillation.
Now the system overshoots three times—twice
beyond the setpoint and once before it.

10

Copyright Prentice Hall, 2001 19

Proportional-Derivative Control
Proportional Control

Pgain = 30

Pgain = 50

• Pgain=30: Oscillation problem is more
pronounced; there are a total of five oscillatory
swings

• Pgain=50: Oscillation behavior has taken over

– System moves to within a slight distance
from the setpoint, but cannot stabilize at the
setpoint

– Even a small error generates a power
command that moves the system across the
setpoint, resulting in a power command in the
opposite direction

– While the position error is small on the
graph, the power command swings are quite
evident.

Copyright Prentice Hall, 2001 20

Proportional-Derivative Control
Proportional-Derivative Control

• Problem: Simply cranking up the pgain does not
get the system to perform better

– Motor drives output wheel to its position faster,
but still overshoots/oscillates at higher gains

– Driving at full power is appropriate when the
system is far away from its setpoint

– When pgain is high, then even a slight deviation
from the setpoint causes a large power command

• Solution: Correct for the momentum of the
system as it moves toward the setpoint

– Momentum is mass times velocity; therefore,
momentum is directly proportional to velocity

– Correct for the velocity when the system nears its
setpoint by subtracting an amount from the power
equation based on the velocity of the system

void collect_data() {
int i, power, counts, velocity;
for (i= 0; i< SAMPLES;) {
 counts= encoder10_counts;
 velocity= encoder10_velocity;
 power= pgain * (0 - counts) - dgain * velocity;
 motor(0, power);
 data[i++]= counts;
 data[i++]= velocity;
 data[i++]= power;
 }
}

Power command is now combination
between proportion of error and velocity
of system

11

Copyright Prentice Hall, 2001 21

Proportional-Derivative Control
Proportional-Derivative Control

• Pgain=4, Dgain=1: Overshoot is minimized, and
there is no oscillatory behavior at all.

• Pgain=10, Dgain=5: unstable; dgain is too large

– Position graph: controller “puts on the
brakes” too hard and the system stops moving
before the destination setpoint (between the
0.8 and 1.0 second mark)

– When the velocity hits zero, the
proportional gain kicks in again and the
system corrects

• PD Control is used extensively in industrial
process control

– Combination of varying the power input
when the system is far away from the
setpoint, and correcting for the momentum of
the system as it approaches the setpoint is
quite effective

pgain=4, dgain=1

pgain=10, dgain=5

Copyright Prentice Hall, 2001 22

Proportional-Derivative Control
Proportional-Derivative Control

• Discrete Sampling Error: Note discrete nature of the velocity graph, which is due to the fact
that the encoder software calculates the velocity measure infrequently—every 0.15 seconds, as
indicated by the steps in the velocity curve. (encoder driver takes difference between last encoder
reading and current one to determine velocity) Since the testbed LEGO geartrain is overall a rather
low-performance system, this is probably inconsequential, but this error is endemic to digital
control systems and is a topic of much concern in control theory.

• Classical control theory is all about analyzing the response of systems. By modeling mass of the
system being controlled, power flow into the system, load on the system, and other characteristics,
it is possible to determine optimal values for the gain factors.

• Self-tuning or adaptive controllers: dynamically adjust gain parameters while system is in
operation. This allows a controller to compensate for changing factors external to the system.
Better than standard P-D controller.

• PID control: “I” stands for integral; an integral term can correct for steady-state errors like in
the first example, where the system came to rest a few counts away from the setpoint. By
integrating this error over time, the controller can deliver a “kick” to drive the system to the
setpoint.

