
1

Autonomous Mobile Robots

Lecture 05: Advanced Sensing

Lecture is based on material from Robotic Explorations: A Hands-on Introduction to Engineering, Fred Martin, Prentice Hall, 2001.

Copyright Prentice Hall, 2001 2

Outline

• Quadrature Shaft Encoding

• Infrared Sensing

• Infrared Communications

• Ultrasonic Distance Sensing

• Optical Distance Sensing

• Sensor Data Processing

2

Copyright Prentice Hall, 2001 3

• Advanced Sensing: Read Chapter 6 of Robotic Explorations
(textbook)

Homework #5

Copyright Prentice Hall, 2001 4

Sensors in the Lab

• CdS Photoresistor/Photocell

• Snap-action switch (bumper/lever switch)

• U-shaped break-beam sensor

• IR reflectance sensor

• Rolling ball inclinometer (tilt switch)

3

Copyright Prentice Hall, 2001 5

Quadrature Shaft Encoding

• Basic shaft encoding method: measures how
far an axle rotates and its speed, but cannot
tell when the axle changes direction

• Quadrature Shaft Encoding: measures precise
rotation of axles and velocity; maintains
accurate counts even when the axle’s
direction of rotation changes

• Applications:

– Position monitoring of trapped systems,
where the mechanics of a system limit travel
between known stop positions, e.g., rotary
robot arms, where encoders are used to
measure joint angles, and Cartesian robots,
where the rotation of a long worm screw
moves a rack back and forth

– Measure the motion of robot wheels, as part of
dead-reckoning robot positioning systems.
By accumulating the result of a robot’s wheels
driving it along a surface, an estimate of
overall translational movement can be made.

A pair of encoders is used on a single shaft.
The encoders are aligned so that their two
data streams are one quarter cycle (90 deg.)
out of phase. When rapidly sampling the data
from the two encoders, only one of the
encoders will change state at a time. Which
encoder changes determines the direction
that the shaft is rotating.

Copyright Prentice Hall, 2001 6

Quadrature Shaft Encoding

Which direction is shaft moving?

• Suppose the encoders were previously at the
position highlighted by the dark band; i.e.,
Encoder A as 1 and Encoder B as 0. The next
time the encoders are checked:

– If they moved to the position AB=00,
the position count is incremented

– If they moved to the position AB=11,
the position count is decremented

 State transition table:

• Previous state and current state are the
same, then there has been no change in
position

• Any single-bit change corresponds to
incrementing/decrementing the count

• If there is a double-bit change, this
corresponds to the encoders being misaligned,
or having moved too fast in between
successive checks—an illegal transition

4

Copyright Prentice Hall, 2001 7

Quadrature Shaft Encoding

• The pulley wheel just a convenient device to
perform the function of alternately breaking
and opening the light beams; any disk with
holes or notches in it can serve equally well

• Similarly, break-beam sensors can be the
“U”-shaped integral variety or a pair of
discrete LED emitters and detectors

• The key is in the alignment, creating the
quarter-cycle phase shift between the two
encoders.

• Important to shield the encoder optics from
ambient light. Otherwise, a burst of bright
light could flood the detectors, causing the
encoder to fail unexpectedly.

Construction

A LEGO pulley wheel may be used with
two break-beam optosensors to build
a quadrature encoder. The two optosensors
must be placed so that they are 90 degrees
out of phase in reading the position of the
wheel. In the diagram, the “A” encoder is
fully blocked, while the “B” encoder is in
the transition between being blocked and
being open.

Copyright Prentice Hall, 2001 8

Quadrature Shaft Encoding
Construction

A standard computer mouse employs a
pair of quadrature encoders to keep track
of the mouse ball’s movement. On either
side of each slotted wheel encoder
is a clear-colored LED emitter, and a
black-colored photodetector housing.
Inside each photodetector housing are two
detector elements, precisely aligned
to provide the quarter-cycle phase angle.

Clarostat Series 600 Optical Rotary Encoder
A commercial enclosed quadrature encoder
typically operates off of a +5v supply, and has
two digital outputs providing the encoder
stream. Easy to work with, optically shielded,
ready to mount, high resolution. ($40.00)

• 256 counts per revolution vs. LEGO
pulley wheel’s 24 counts per revolution

5

Copyright Prentice Hall, 2001 9

Quadrature Shaft Encoding

• Requires break-beam encoders to be plugged into digital input ports

– Allows encoder values to be sampled more frequently without A/D conversion
overhead

– Light/dark states of encoder must produce voltages to match digital inputs: 1v low
and 4v high

• Technique for interpreting quadrature encoder signals: repeatedly check the encoder
state, looking for transitions and incrementing/decrementing saved encoder count

• In order to perform its periodic function of checking the encoder values, the driver
“patches itself” into the Timer 4 interrupt, which is already set up by the Interactive C
runtime software to operate at 1000 Hz

• This interrupt runs the “SystemInt” routine, which controls various system services
during Handy Board operation, such as motor pulse-width modulation and LCD screen
printing

• If interested, sample code is available (Fred Martin)

Driver Software

Copyright Prentice Hall, 2001 10

Quadrature Shaft Encoding

• Initially, the TOC4 interrupt vector (at
address $BFE2) points at the
SystemInt routine, which terminates in
an RTI return-from-interrupt
instruction. The encoder routine is not
linked into the interrupt structure

• The encoder routine installs itself by
taking the pointer to the SystemInt
routine out of the TOC4 vector
location, and storing it into a JMP
instruction located at the very end of
the encoder routine

• Then it replaces the TOC4 vector with
a pointer to itself

• When it’s all done, on each interrupt ,
the new encoder routine runs first, and
then the original SystemInt runs

Driver Software

Excellent way for any periodic driver
to operate, without having to use up the limited
resources of another 68HC11 interrupt vector

6

Copyright Prentice Hall, 2001 11

Infrared Sensing
• Simple IR sensing:

– Reflectivity sensing or break-beam
sensing

– Exactly analogous to using a light bulb,
candle flame, or other constant light
source with a visible-light photocell
sensor

– Sensor simply reports the amount of
overall illumination, including both
ambient lighting and the light from light
source

• Advantage over resistive photocells:

– Quicker to respond to light changes, so
they are well-suited to the break-beam
shaft encoding application

– More sensitive, so with proper shielding
from ambient light sources, can detect
small changes in lighting levels.

Sharp Demodulators ($3)

More powerful way to use infrared sensing:

• By rapidly turning on and off the source of
light, the source of light can be easily picked
up from varying background
illumination—even if the actual amount of
modulated light is very small

• Great insensitivity to background ambient
lighting can be accomplished

• This is how tv remote controls work;
infrared LEDs in the remote control transmit
rapid flashes of light, which are decoded by
a device in the tv

Copyright Prentice Hall, 2001 12

Infrared Sensing

• Basic principle: by flashing a light
source at a particular frequency
(modulation), the flashes of light
at that same frequency can be
detected (demodulation), even if
they are very weak with respect to
overall lighting conditions

• Demodulator is tuned to a specific
frequency of light flashes

– Commercial IR demodulators
range 32 - 45 KHz; high
enough to avoid interference
effects from common indoor
lighting sources, like
florescent lights

• Note negative true logic

• In practice, it takes 5-10 cycles for
demodulation

Modulation and Demodulation

Idealized Response of Infrared Demodulator
The upper graph indicates an infrared LED being turned
on in two successive bursts. Each burst consists of a
number of very rapid on-off pulses of light. The lower
graph shows the output from the IR detector. During the
rapid on-off bursts, the demodulator indicates
“detection”; in between the bursts, the demodulator sees
no IR activity, and indicates “no detection.”

7

Copyright Prentice Hall, 2001 13

Infrared Sensing

• HB includes special hardware for generating the 40
kHz “carrier” frequency needed for infrared
transmission, as well as a power transistor for
driving infrared LED emitters

• The HB’s IR output circuit is controlled by the
68HC11’s timer output 2. This output mapped to bit
6 of the 68HC11’s Port A register, which is located
at address 0x1000

• To turn on the IR output:

– bit set(0x1000, 0x40);

– Visible red LED near the IR output port should
light up

– Indicates that the HB is powering the IR output

– IR output is not just “on,” but rather is turning
on and off—modulating—at a frequency of 40
kHz

HB’s IR Transmit Circuit

Minimal circuit for an IR LED emitter:
IR LED is wired in series with a resistor. The
resistor serves to limit the amount of current
through the LED, thus determining its
brightness and distance from which it can be
detected. Without the resistor, the LED will
illuminate too brightly and will burn out.

Copyright Prentice Hall, 2001 14

Infrared Sensing
Connecting IR LEDs

In the suggested circuit for an IR
LED emitter, a visible LED is
wired in series with the IR LED
and current-limiting resistor. The
visible LED—any standard
red or green one will do—greatly
facilitates debugging by lighting
up when the circuit is powered.

To connect multiple IR LED transmitters to the Handy
Board’s output, provide each LED with its own
current-limiting resistor.

8

Copyright Prentice Hall, 2001 15

Infrared Sensing
Detecting Continuous Modulated IR Light

• Build the IR LED/resistor assembly and plug it into the HB’s IR output port, and execute the
bit_set(0x1000, 0x40); required to enable the IR transmission

• The red IR output LED indicator should turn on (if LED transmitter has series visible LED, this
should also light)

• Poll the HB’s IR detector and set state of motor output 0 based on it. If the IR detector indicates
no infrared detection, the motor output will light its green LED; if the detector registers infrared,
the red output will be lit:

while (1) { if (peek(0x1000) & 4) fd(0); else bk(0);}

– Makes use of the fact that the HB’s IR detector is connected to bit 2 of the 68HC11’s Port A register,
which is located at address 0x1000. The loop repeatedly tests bit 2, by “AND’ing” together the byte at
address 0x1000 with the number 4, which is 00000100 in binary. This yields either binary 00000100 or
00000000—decimal 4 or 0—depending on the state of the relevant bit. The if statement then accepts 4 as
true, running the fd(0) command, or 0 as false, running the bk(0) command.

• Now, when the IR transmitter is aimed at the HB’s IR detector, the motor 0 output should light
the red LED
• HB becomes a portable IR detector

Copyright Prentice Hall, 2001 16

Infrared Sensing
Proximity Sensing

• Using the simple modulated output of an IR LED and an IR
demodulator, it’s possible to build an effective proximity
sensor

• Light from the IR emitter is reflected back into detector by a
nearby object, indicating whether an object is present (just like
the simple (not modulated) reflectance sensors)

• LED emitter and detector are pointed in the same direction,
so that when an object enters the proximity of the emitter-
detector pair, light from the emitter is reflected off of the
object and into the detector

• This kind of simple true-false proximity sensing is an ideal
application for modulated/demodulated IR light sensing

• Compared to simple reflected light magnitude sensing,
modulated light is far less susceptible to environmental
variables like amount of ambient light and the reflectivity of
different objects

9

Copyright Prentice Hall, 2001 17

Infrared Sensing
Using Proximity Sensing

The Emitter

• When constructing a proximity sensor, it is necessary to
shield the light from the emitter from directly entering
the detector, especially since most IR detectors are
extremely sensitive, with auto-gain circuits that amplify
minute levels of light, shielding can be a real issue,
because if light from the emitter can bleed directly into
the detector, the sensor will be rendered useless

• One of the simplest and most effective ways to shield
the emitter LED is with black heat-shrink tubing

– Tubing can be placed around the base of the LED
emitter and extend straight outward

– After shrinking the tubing, it can be cut to length
with a scissors, providing an easy way of tuning the
amount of light output

Completed IR Emitter/Detector Pair

Infrared noise sources
There are many everyday sources of
infrared light that can interfere with IR
proximity sensing: sunlight (outdoor
and through windows), florescent
lighting, incandescent lighting, and
halogen lighting

Copyright Prentice Hall, 2001 18

Infrared Sensing
Using Proximity Sensing

The Detector

• Detector’s digital output is wired to a HB signal input
(analog or digital)

• The emitter plugs into the HB IR output port, and the
detector plugs into any HB sensor port

• To test the sensor, turn on the HB’s beeper if the
detector registers “true,” and turn it off otherwise:

– Plug the detector into digital sensor port 7, and run

set_beeper_pitch(1000.); /* beep at 1000 Hz. */

bit_set(0x1000, 0x40); /* turn on IR output */

while (1) {if (digital(7)) beeper_on(); else
beeper_off();} /* beep based on the state of the IR
detector */

– Bring your hand near in front of the sensor, and
the HB should beep

Left: modern, highly integrated IR
detector, manufactured by Sharp.

Right: older “tin can” style, widely
used, more readily available.

Both require 5v power supply and can
be simply connected to HB.

10

Copyright Prentice Hall, 2001 19

Infrared Communications

• Communications is one of the most prevalent applications of infrared light;
practically all television and consumer electronics come with an infrared remote
control

• This section:

– learn how these infrared communications schemes work

– how they can be put to use for robotic applications

– study the signals from a Sony-brand remote control

– reverse-engineer the Sony protocol

– create programs for the Handy Board to receive and transmit Sony-format
infrared signals

Copyright Prentice Hall, 2001 20

Infrared Communications

• Performance of Sharp IS1U60 IR demodulator:

– Upper trace is the enable line to the HB’s IR transmit
transistor, showing 12 bursts of infrared light spaced 25
microseconds part — 40 kHz of light lasting a total of 300 µs

– Lower trace shows the response of the particular IR sensor

– Strong vs. weak IR signal

• Notice:

– It takes at least three “blinks” to trigger the sensor; 8-9
blinks for weaker signal (at the proper frequency)

– “recognized” pulse is of varying length, and that it extends
beyond the period of time that the infrared light-blinks are
being transmitted: depending on signal-strength, a 300 µs IR-
transmit period may result in a received pulse that varies
between about 300 and 500 µs in duration

– This uncertainty has implications in the method used for
transmitting a stream of data using the IR communications
path

Characteristics of IR Demodulators

11

Copyright Prentice Hall, 2001 21

Infrared Communications

Bit Frames:
• Each bit takes the same amount of time to
transmit
• Synchronization is based on the falling edge
of the Start bit; after that, following bits are
determined by sampling the signal in the
middle of the time period when the bit is valid
(i.e., the bit frame)
• Method is good when the waveform can be
reliably transmitted across a wire or other
communications medium
• Used for standard computer/modem
communication

Serial Data Transmission Methods

Bit Intervals:
• Amount of time between falling edges
determines whether a bit is 0/1

– 0 represented by short interval
– 1 represented by longer interval

• There is a short interval at the beginning to act as a
start of frame, and a transition at the end to allow the
last bit to be specified
• This method is good when it is difficult to control
the exact shape of the waveform across the
communications path
• Ideal for IR modulation/demodulation

Copyright Prentice Hall, 2001 22

Infrared Communications

• By comparing 7-key, 8-key and 9-key bit
streams, and assuming that these keys have
encodings that follow in in sequential order, we
can figure out that

• LSB first order of bit stream
• First 8 bits are Key Data
• Next 3 bits are Device Data (e.g., TV,
VCR, CD)
•1.2 ms pulse represents a “0”
• 1.8 ms pulse represents a “1”

Sony-Format IR Communications

Three different pulse intervals are revealed: a “start
bit” of 3.0 milliseconds (ms), and data bits of 1.2 and
1.8 ms.

12

Copyright Prentice Hall, 2001 23

Infrared Communications

• Based on Sony IR protocol, it’s possible to
write a program for the HB to decode signals
from Sony remote controls

• Assembly language driver program uses
HB’s built-in IR receiver to decode Sony-
format signals

• Sony IR decoding algorithm: sony_rcv.asm

– Installed as an interrupt routine

– Automatically called by the 68HC11
whenever the HB’s IR sensor detects a
burst of IR modulated light

• Also, set of tests for resetting the whole
algorithm if IR reception is interrupted in
middle of receiving a particular byte, and for
suppressing detections that occur too rapidly

• Driver code available

Receiving Sony IR Signals on the Handy Board

Copyright Prentice Hall, 2001 24

Infrared Communications

• Extra hardware on 68HC11 chip for performing powerful timing functions in the background

•16–bit timing register, TCNT register, continually increments, keeping track of elapsed time at a rate
of 2,000,000 counts/s (8 MHz oscillator). Used to “timestamp” events on special timer input lines.

• HB’s IR receiver is connected to timer input 1. By configuring the control registers associated with this
timer input, 68HC11 will perform two functions automatically, and in the background:

(1) Record value of TCNT register at exact moment of a transition on the timer input line

(2) Schedule interrupt routine to be executed right after the transition on the input line has occurred

• IR reception routine is set up to activate when a “falling edge” occurs; in other words, when the Sharp
IR receiver latches on to an infrared burst. The 68HC11 takes the timestamp reading, and schedules the
IR reception routine to execute soon after.

• Timestamp function is critical because there can be variable delays between the event itself (i.e., the
IR reception) and the interrupt routine being called

– e.g., if 68HC11 is presently in middle of executing a different interrupt routine, the IR reception
routine will have to wait until the other routine is done before the IR routine gains control. Because
of the timestamping function, however, the IR routine can still know the precise point in time when
the IR receiver triggered detection.

Timing and Interrupts

13

Copyright Prentice Hall, 2001 25

Infrared Communications

• Interrupt-based driver for transmitting 8–bit bytes over
infrared using the Sony protocol (code available)

• Using the IR Transmit Routine:

• Routine is provided in the sonyxmit.asm, with the IC
binary file sonyxmit.icb. After loading the .icb file into
IC, define:

int sony_xmit(int data)

• Routine schedules the data byte to be transmitted out the
HB’s IR output, using the Sony infrared data transmission
format, and returns immediately with a return value equal to
the data being transmitted

• If a transmission is in progress when sony_xmit() is called,
the routine returns the value -1, indicating that no action was
taken

• Takes 15 ms to transmit IR byte; HB uses carrier
modulation of IR signal so that 68HC11 only has to generate
ms pulse modulation to represent IR data (via interrupts)

Transmitting Sony IR Signals from the Handy Board
* IR Beacon *
void beacon (int data) {
 while (1) {
 sony_xmit(data);
 defer();
 }
}

Robot continually broadcasts a value
for other robots to see
• Sony_xmit() routine inserts a 5
msec space before the transmission
of each data byte, so that bytes will
not run together if transmitted in
rapid succession
• beacon() routine should be
launched as its own process, using
IC’s multi-tasking capability
• defer() command tells IC that it
may give another process its turn
after scheduling the data byte for
transmission

Copyright Prentice Hall, 2001 26

Ultrasonic Distance Sensing

• Ultrasonic burst, or “chirp,” travels out to
an object, and is reflected back into a
receiver circuit, which is tuned to detect the
specific frequency of sound emitted by the
transmitter.

• By measuring the elapsed time from when
the chirp is emitted to when the echo is
received, the distance may be calculated. In
normal room temperature, sound travels
about 0.89 milliseconds per foot

• Since the sound has to go out to the object
and then back to the receiver, 1.78 msec of
elapsed time corresponds to an object at one
foot’s distance from each of the emitter and
receiver

• So the distance to the target object (in
feet) is the time it takes for a chirp to make
a round trip (in msec) divided by 1.78

Ultrasonic Ranging

Ultrasonic ranging

Measures the actual time-of-flight for a
sonar “chirp” to bounce of a target and
return to the sensor

Greater accuracy than with IR sensing

14

Copyright Prentice Hall, 2001 27

• Bats use radar-like form of ultrasonic ranging to navigate as
they fly

• Polaroid Corp. used ultrasonic ranging in a camera to
measure the distance from the camera to the subject for auto-
focus system

– Contemporary cameras use IR auto-focus: smaller,
cheaper, less power

– Ultrasonic ranging system is sold as OEM (original
equipment manufacturer) kit (unpackaged board-level
technology)

• Easily interfaced to Handy Board using 2-3 simple digital
control signals

• INIT: input to ranging board, generates chirp

• ECHO: output indicates when chirp received

• BINH: Blanking inhibit input: Signal to measure very
close distances

Commercially Available Polaroid 6500

Polaroid 6500 Series Ultrasonic
Ranging System

Single board which holds all of the
electronics

One ultrasonic transducer, which acts
as both the speaker and microphone

Ultrasonic Distance Sensing

Copyright Prentice Hall, 2001 28

Signal Gain. Problem: Echo from a far away object may be one-millionth strength of echo from a
nearby object. Solution: 6500 board includes a variable gain amplifier that is automatically controlled
through 12 gain steps, increasing the circuit’s gain as time elapses while waiting for a echo to return.

Transducer Ringing. One transducer is used as transmitter/receiver (50 kHz). Problem: ringing
problem: after transmitting outgoing chirp, transducer can have residual vibrations or ringing that may
be interpreted as echo signal. Solution: By keeping initial circuit gain low, likelihood of false triggering
is lessened. Additionally, however, the controller board applies a blanking signal to completely block
any return signals for the first 2.38 ms after ultrasonic chirp is emitted. This limits the default range to
objects 1.33 feet and greater. [close-up range: “blanking inhibit” input is used to disable this]

Operating Frequency and Voltage. Polaroid ultrasonic system operates at 49.4 kHz. Each sonar
“chirp” consists of sixteen cycles of sound at this frequency. Polaroid board generates a chirp signal of
400 volts on the transducer. Problem: High voltage is necessary to produce an adequate volume of
chirp, so that the weak reflected signals are of enough strength to be detected. Polaroid ultrasonic
transducer can deliver an electrical shock. Solution: do not touch!

Electrical Noise. Problem: High amplification causes sensitivity to electrical noise in the power
circuit, especially the type that is caused by DC motors. Solution: all high current electronic and
electro-mechanical activity be suspended while sonar readings are in progress, or provide the sonar
module with its own power supply, isolated from the power supply of the robot’s motors.

Details About Operation

Ultrasonic Distance Sensing

15

Copyright Prentice Hall, 2001 29

Exercises
1. Robot navigation.
(a) Mount the Polaroid ranging unit onto the
HandyBug. Determine the extent to which
operating the HandyBug’s drive motors affects
sonar readings.
(b) Write a control program to drive HandyBug
around without crashing into objects.
(c) Mount the sonar transducer on a shaft driven
from a servo motor, and write software to enable
HandyBug to search for and then drive toward
open spaces in its navigation routines.

2. Multi-sonar interference. Using two robots,
each of which has its own sonar navigation
system, characterize the nature of the interference
(or lack of it) between the two sonar systems.

3. Mapping. Combine a sonar unit with a robot
that has shaft encoders on its wheels, and create a
demonstration application of a robot that can map
its surroundings.

Connecting to the Handy Board

Ultrasonic Distance Sensing

 Driver Code is available

Copyright Prentice Hall, 2001 30

Sharp GP2D02
• Compare to Reflective Optosensor:

– Crude proximity and distance measurements

– Emitter LED light reflected off target; detector
LED measures strength of reflection

–Works well only when 1 inch or less distance to
target; affected by ambient light, target reflectivity

• Sharp GP2D02 distance sensor works by measuring
the incident angle of a reflected beam of infrared light

– Combines modulated IR emitter & detector that
has focusing lens and “position-sensitive” detector

• Emitted light beam creates light spot on target
surface. This spot is picked up by detector lens, which
focuses light spot along the position-sensitive detector.

• When the sensor unit is closer to the target, the
incident angle of the reflected light changes and so does
the position of the projected spot

Optical Distance Sensing

• The position-sensitive detector reports
the location of the light spot, which thus
corresponds to the distance from the
sensor unit to the target

• Reading independent of target
reflectivity

16

Copyright Prentice Hall, 2001 31

Connecting to the Handy Board

Optical Distance Sensing

• Driver code available
• GP2D02 uses digital interface
• Connect to HB’s SPI port (Port D register)

Exercises
1. Wall following. The GP2D02 is ideal for
tracking walls. Using a single GP2D02 sensor
mounted on the HandyBug, write a program to
have it follow along a wall. Try different setpoints
of the nominal distance from the wall—what is the
farthest distance from the wall that yields reliable
results? Compare this to other sensor technologies.

2. Maze running. Using multiple GP2D02
sensors, it should be possible to drive down the
center of a maze “hallway.”

(a) Construct a maze environment for HandyBug.
The walls should be far enough apart to allow
HandyBug to maneuver easily.

(b) Using two GP2D02 sensors, write a program
so that HandyBug drives forward maintaining
equal distance between two walls of the maze.

Copyright Prentice Hall, 2001 32

Sensor Data Processing

• A big part of getting robot programs to function
as intended lies in the interpretation of sensor
data.

• If a robot’s sensors not are performing or
responding to the world as expected, it will be
very difficult to have the robot react properly.

• In this section, we will explore a set of issues
relating to the interpretation of sensor data,
including

– sensor calibration techniques

– sensor data filtering techniques

void line_follow() {
 while (1) {
 waddle_left();
 waituntil_on_the_line();
 waituntil_off_the_line();
 waddle_right();
 waituntil_on_the_line();
 waituntil_off_the_line();
 }
}

Reference Activity: Line Following

• HandyBug with one downward-facing
reflectance sensor

• Robot waddles back and forth across
line, switching direction each time it
has completely crossed over

• How do sensor functions work?

17

Copyright Prentice Hall, 2001 33

Sensor Data Processing

• Simplest, effective way to interpret sensor
values is with fixed thresholding

• Sensor reading is compared with a setpoint
value. If the reading is less than the setpoint, then
the robot is assumed to be in “state A” (e.g., “on
the line”); if the reading is greater than the
setpoint, then the robot is in “state B” (“off the
line”).

• Process converts a continuous sensor
reading—like a light level—to a digital state,
much like a touch sensor is either pressed or not.

• Line-following: suppose the downward-facing
reflective light sensor yields a reading of about
10 when aimed at the floor, and 50 when aimed at
the line. It would then make sense to choose the
midpoint value of 30 as the setpoint for
determining if the robot is on the line or not.

• What if the setpoint value needs to change
under different operating conditions?

• Line Following: setpoint value is hard-
coded into two different routines—an
approach that clearly does not scale as the
program complexity increases.

• Better way: break out threshold setpoints as
named variables or constants, and then refer
to them by name in the actual routines

• When the setpoint needs to be changed,
there is one clearly specified point in the
program for this to be done

Fixed Thresholding Parameterized Fixed Thresholding

int LINE_SETPOINT= 30;

Copyright Prentice Hall, 2001 34

Sensor Data Processing

• Sensor data is not extremely reliable

• Line-following: variances in ambient
lighting and surface texture of the floor can
easily create unexpected and undesired
glitches in sensor readings.

– Bump on floor may spike the
readings

– Shiny spots on line may reflect as
well as the floor, dropping the sensor
readings up into the range of the floor

• Solution: two setpoints can be used

– Imposes hysteresis on the
interpretation of sensor values, i.e.,
prior state of system(on/off line)
affects system’s movement into a new
state

Thresholding with Hysteresis Line Following performance run :
Setpoint =20

int LINE_SETPOINT= 35;
int FLOOR_SETPOINT= 10;
void waituntil_on_the_line() {
 while (line_sensor() < LINE_SETPOINT);
}
void waituntil_off_the_line() {
 while (line_sensor() > FLOOR_SETPOINT);
}

18

Copyright Prentice Hall, 2001 35

Sensor Data Processing

• Install manual calibration
routines

• Robot is physically positioned
over the line and floor and a
threshold setpoint is captured

• Calibrate () guides process of
setting threshold setpoints for
line/floor

• Huge improvement over fixed
and hard-coded calibration
methods

• Declare setpoint variables as
persistent and use calibration
routine

Calibration by Demonstration
int LINE_SETPOINT= 100;
int FLOOR_SETPOINT= 100;
void main() {
 calibrate();
 line_follow();
}
void calibrate() {
 int new;
 while (!start_button()) {
 new= line_sensor();
 printf("Line: old=%d new=%d\n", LINE_SETPOINT, new);
 msleep(50L);
 }
 LINE_SETPOINT= new; /* accept new value */
 beep(); while (start_button()); /* debounce button press */
 while (!start_button()) {
 new= line_sensor();
 printf("Floor: old=%d new=%d\n", FLOOR_SETPOINT, new);
 msleep(50L);
 }
 FLOOR_SETPOINT= new; /* accept new value */
 beep(); while (start_button()); /* debounce button press */
}

Copyright Prentice Hall, 2001 36

Sensor Data Processing

• Technique whereby sensor thresholds may be determined automatically, and can
dynamically adjust to changing operating conditions. This and related methods have the
opportunity to make robot behavior much more robust in the face of the variability and
uncertainty of the real world.

• Line Following: Add code to automatically calculate a midpoint between the on-going
maximum and minimum values, and use this midpoint as the line threshold.

– Does not work well in practice: maximum values recorded as robot passes over
line are much higher than typical line values. Robot does not see line. Routine fails.

• Problem: just having minimum and maximum sensor values is not enough to
effectively calculate a good threshold.

• Solution: What is needed is a whole history of past sensor values, allowing the
calculation of (for instance) the average sensor reading.

• Driver code available: install an interrupt routine that periodically samples the sensor
values and stores them in a buffer. Other functions, such as the current maximum or
current average functions, iterate through the stored values to calculate their results.

Sensor Histories

