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Autonomous Mobile Robots

Lecture 02: Inside the Handy
Board

Lecture is based on material from Robotic Explorations: A Hands-on Introduction to Engineering, Fred Martin, Prentice Hall, 2001.
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• Motorolla Chip: Read the 6.270 Hardware Reference Manual  (from
MIT LEGO Robot Course - linked on course web page)

• Inside the Handy Board: Read Appendices A and D of Robotic
Explorations (textbook) and pp. 46 - 62 of The Handy Board Technical
Reference Manual.

Homework #2
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Bits, Bytes and Characters:
• Computers process binary digits, or bits

• Microprocessors group bits into words

• Eight-bit words are called bytes

– 28 = 256 different states can be represented, e.g.,

– natural number from 0 to 255

– integer in the range of -128 to +127

– character of data (letter, number, printable symbol)

• 16-bit words have 216 = 65536 different values

Introduction to Microprocessors and the Motorola 68HC11

Intel invented the modern microprocessor in 1970 - Intel 4004
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Bits, Bytes and Characters:
• Hexadecimal numbering system

– 16 different digits to represent each place value of a
numeral

– A - F used to represent the values of (decimal) 10
through 15, respectively

• 4 bits = 1 hex digit

• 1 byte = 2 hex digits

• 16-bit word = 4 hex digits

• Convention used for 68HC11

– prefix % for binary numbers

– prefix $ for hexadecimal numbers

– no prefix for decimal numbers

Introduction to Microprocessors and the Motorola 68HC11
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Bits, Bytes and Characters:
• ASCII (American Standard Code for Information Interchange)

– 1 byte used to represent 1 (English) character

– Upper & lower case letters, numbers, punctuation

– 128 ASCII characters using values $00 to $1F

– Important for displaying message over the serial line or on the LCD
screen of the Handy Board

Introduction to Microprocessors and the Motorola 68HC11
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Introduction to Microprocessors and the Motorola 68HC11
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Memory Map:
• Microprocessors store programs and data in memory, which is organized as

a contiguous array of addresses

• Each memory address contains 8 bits (1 byte) of data

• Entire amount of memory accessible is called address space

• 68HC11 has 65,536 memory locations, or 16 bits of address information

– 16-bit numeral can be used to point at (address) any of the memory
bytes in the address space

– 4 hex digits can exactly specify one memory location, where there is
one byte of information

– Most of address space is unallocated, allowing for devices such as
external memory to be addressed

Introduction to Microprocessors and the Motorola 68HC11
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Memory Map:
• Specialized portion: Left Column

– 256 bytes of internal RAM, $0000 to $00FF

– 64 bytes for register bank, $1000 to $103F,
used for controlling hardware features of
68HC11

– 32 bytes for interrupt vectors, $BFC0 to
$BFFF, in which are stored 2-byte pointers
to code to be executed when various events
occur

• Handy Board portion: Right Column

– Digital Sensor and motor circuitry, $7000 to
$7FFF, memory reads will retrieve values of
6 digital input lines and 2 user buttons;
memory writes control 4 motor outputs

– External RAM, $8000 to $FFFF, preserved
when power turned off

Introduction to Microprocessors and the Motorola 68HC11
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68HC11 Registers
Microprocessor moves data from

memory to internal registers,
processes it, then copies back into
memory

Introduction to Microprocessors and the Motorola 68HC11

• Accumulators
– Perform most arithmetic operations, logical and bit operations

– Results placed back into a register, e.g., “add something to A register”

• Index Registers
– Point to data that is located in memory, e.g., register X indexes number

added to sum

• Stack Pointer (SP register)
– Stores location of the program stack

– Used for temporary storage of data

– Stores return address when a subroutine is called

• Program Counter
– Keeps track of current instruction being executed
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Evaluation Sequence
• When a microprocessor runs a program, it advances sequentially through

memory, fetching and executing one instruction at a time
– PC register keeps track of address of current instruction

– Microprocessor automatically advances PC to next instruction after finishing current
execution

• Example:  (hex) 86 nn
– $86 is operational code (op-code), meaning “load A register”

– nn is byte to be loaded

– Two-cycle instruction ==> takes 1.0 µsec real time to execute

• Instructions can be 1 - 4 bytes long, take varying numbers of machine cycles to
execute, depending on complexity

– 68HC11 in Handy Board operates at 8 MHz (8 million cycles per second)

– Frequency is divided into 4 clock phases to yield a machine cycle rate of 2 million
machine cycles per second

• Period of a machine cycle  =  0.5 µsec real time to execute

Introduction to Microprocessors and the Motorola 68HC11
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Machine Code vs. Assembly Language
• The program that is executed directly by the microprocessor

• Machine Code
– Raw data stored as a microprocessor’s program

– Hexadecimal notation

• Object Code
– The file that represents the bytes to be run on the microprocessor

• Assembly Language
– Set of mnemonics (names) and a notation that is readable/efficient way of writing

down the machine instructions

– LDAA #80  - Load Accumulator A with $80 (A is 1-byte register: value must be $0 to
$FF)

Introduction to Microprocessors and the Motorola 68HC11

Assembler
Program

microprocessor
Assembly-language

program

Machine/Object
code

LDAA  #$80
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Address Modes
• Immediate

– LDAA #$80 (load A register with hex
number $80)

– Data is part of instruction; must use prefix
#

• Direct

– STAA $80 (store A register to memory
location $0080)

– Data is located in zero page (internal
RAM $0000 to $00FF)

• Extended

– STAA #$1000 (store contents of A
register at memory location $1000)

– Location of data specified by 16-bit
address given in instruction

Introduction to Microprocessors and the Motorola 68HC11

• Indexed
– LDAA 5, x  (load A register with

memory byte located at address that is
the sum of the value currently in X
register and 5)

– Offsets in the range 0 to 255 allowed

– Most useful when working with arrays

• Inherent

– TAB (transfer contents of A register to
B register)

– Data does not require external memory
address

• Relative

– BRA 5  (skip five bytes ahead in the
instruction stream)
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Arithmetic Operations
• 68HC11 provides instructions that work on both 8-bit and 16-bit data values

• Addition - both

• Subtraction - both

• Multiplication - of two 8-bit values to yield a 16-bit value

• Division - of two 16-bit values to yield an integer or fractional result

• Increment - both

• Decrement - both

• Logical AND - 8-bit values (result 1 iff both operands are 1)

• Logical OR - 8-bit values (result is 1 if either or both operands are 1)

• Logical Exclusive OR - 8-bit values (result is 1 if either but not both operands are 1)

• Arithmetic Shift Operations - both (shift left = multiply by  1; shift right = divide by 2)

• Rotation Operations - 8-bit values

• Bitwise Set and Clear Operations - 8-bit values or registers

Introduction to Microprocessors and the Motorola 68HC11
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Signed and Unsigned Binary Numbers
• 68HC11 uses

– Unsigned binary format

• Represents numbers in the range 0 to 255 (one byte of data) or 0 to
65535 (one word of data)

– Two’s complement signed binary format

• Byte represented as -128 to +127

• Word represented as -32768 to +32767

• Highest bit of number is used to represent the sign: 0 for +/0, 1 for -

Introduction to Microprocessors and the Motorola 68HC11

Binary Decimal
%0000 0
%0110 6
%11111111 255

%10011011 signed number
  %0011011 significant digits
  %1100100 invert them
  %1100101 add one
= decimal -101
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Condition Code Register (CCR) and Conditional Branching
• Condition Codes are produces when any type of arithmetic or logical operation is

performed and indicate the following (1-bit flag in CCR is 1 if condition is true) :

– Z - Result of operation was zero

– V - Result overflowed the 8- or 16-bit data word it was supposed to fit in

– N - Result was negative value

– C - Result generated a carry out  of the highest bit position, e.g., 2 numbers added and
result is too large to fit  into one byte

• Conditional Branching on Flags

– BEQ - Branch if Equal to Zero (signed and unsigned data)

– BNE - Branch if Not Equal to Zero (both)

– BLO - Branch if Lower  - branch if number in register was smaller than number
subtracted from it (unsigned data only)

– BHI - Branch if Higher ( unsigned data only)

– JMP - Jump to destination in memory (2-byte address)

Introduction to Microprocessors and the Motorola 68HC11

loop DECA
BNE loop
….
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Stack Pointer and Subroutine Call
• Stack stores data in a Last-In, First-Out (LIFO) method

– Stack Pointer (SP) is special register to keep track of location of stack in RAM;
initialized to top of RAM:  $FFFF for Handy Board

– PSHA  - Stack Push  - value placed on stack: value is stored in memory at the current
address of SP; SP is advanced to the next position in memory

– PULA - Stack Pull - SP  regressed to last location stored; value at that memory
location is retrieved

– Useful for temporary storage of data and for subroutine calls

• Subroutines are pieces of code that may be called by main program or by other
subroutines

– Use stack to know where to return when subroutine finishes:

• Subroutine called, 68HC11 pushes return address onto the stack, 68HC11 branches to begin
executing subroutine, when subroutine finished 68HC11 pulls return address off stack and
branches to that location

– Nested subroutine calls

Introduction to Microprocessors and the Motorola 68HC11

PSHA
PSHB
PULB
PULA
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Interrupts and Interrupt Routines
• Interrupt Routines are a type of subroutine that gets executed when interrupts happen

– 68HC11 stops, saves local state (content of all registers saved on the stack), processes the
interrupt code, returns to main code exactly where it left off (no information is lost)

– Interrupt servicing is automatic

– Cannot interrupt an interrupt - interrupts are queued and processed sequentially

• Interrupt Vector points to the starting address of the code associated with each
interrupt

– Upon an interrupt, 68HC11 finds its associated interrupt vector, then jumps to the address
specified by the vector

– Interrupt Vectors are mapped from $BFC0 through $BFFF on the Handy Board

– 2 bytes needed for each vector ==> 32 total interrupt vectors

– Location is predetermined

• e.g., RESET vector is located at $BFFE and $BFFF (points to start of main code)

Introduction to Microprocessors and the Motorola 68HC11
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Architecture of the 68HC11
• CPU Core communicates with 4

hardware units

• 5 communication ports

– Data written to particular port appears
as voltage levels on real pins
connected to that port

– 68HC11 can interface with external
devices (memory circuit, motor chips,
off-board sensor devices)

• Port A

– Digital, bidirectional port, providing
specialized timer and counter circuitry

– HB: 4 of 8 signals used for on-board
features

68HC11 with the Handy Board Hardware

Recall: register block in memory $1000 to $103F used to interface with these special functions

• piezo beeper

• input from on-board IR sensor

• IR output circuit

• LCD screen

– Remaining 4 free for project use

• 3 inputs for user sensor ports

• 1 output on expansion bus connector

Copyright Prentice Hall, 2001 20

Architecture of the 68HC11
• Port B

– Digital port used for output only

– HB: port acts as the upper half of the
address bus for interfacing with 32K
external memory

• Port C
– Digital, bidirectional port

– HB: port used for multiplexed lower
memory address and the data bus

• Port D
– Bidirectional port dedicated to

communication functions

– 2 pins used for RS-232
communications with desktop
computer

– Other 4 pins open for HB design
• Intended for high-speed networking

68HC11 with the Handy Board Hardware

• Port E
– Analog input port

– A/D converter converts voltages on
this port to 8-bit numbers for the CPU

– HB: 7 of 8 pins wired to analog sensor
connector; 8th pin is connected to a
user knob
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Microprocessor and Memory
• Address Bus

– 15 wires controlled by µP to select a
particular location in memory for R/W

– HB: memory chip is 32K RAM

– 15 wires (215 = 32768) needed to uniquely
specify memory address for R/W

• Data Bus
– 8 wires used to pass data between µP and

memory, 1 byte at a time

– Data written to memory: µP drives wires

– Data read from memory: memory drives

• Read/Write Control Lines
– 1 wire driven by microprocessor to control

function of memory

– +5v for memory read operation

– 0v for memory write operation

68HC11 with the Handy Board Hardware

• Memory Enable Control Lines
– 1 wire (E clock) connects to the enable

circuitry of the memory

– When memory is enabled, it performs
R/W, as determined by the R/W line

Computer = µµP  (executes instructions) + memory (stores instructions and other data)
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Microprocessor and Memory
• Multiplexing Data and Address Signals

– R/W: 8 data bus wires function also as address wires, transmit 8 lower-order bits of
address; then they function as data wires, receive/transmit data byte

– Upper 7 address bits - normal

– Lower 8 address bits are a multiplexed address/data bus, stored in 8-bit Latch (74HC373)

– Address Strobe  tells latch when to grab hold of address values from address/data bus

– Process:
• Transmit lower address bits

• Latch bits

• R/W transaction with memory

68HC11 with the Handy Board Hardware

HB: uses A1 version of Motorola 68HC11
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Microprocessor and Memory
• E Clock

– Synchronization signal generated by the 68HC11 that controls all memory operations

• Enable Circuitry
– HB uses 32K memory chip

– Address space of 68HC11 is 64K

– Enable RAM chip only for addresses within desired 32K range - use upper 32K of RAM

– How to enable RAM chip iff memory access is in upper half of 64K range?
• 16 address lines: A0 - A15

• A15 = logic 1, then A0 - A14 specify address in upper 32K of address space
• NAND together A15 line with E Clock (“negative true” enable) (NAND output TRUE only when

its two inputs are TRUE)

68HC11 with the Handy Board Hardware
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Microprocessor and Memory
• Memory Power Switching Protection

– HB preserves contents of its RAM when power-off and power-on again

– RAM chip has power even when rest of HB is turned off

– RAM chip’s enable input is off when 68HC11 power supply is invalid (<4.5v)

• 68HC11 behavior is undefined
• Solution: use voltage monitoring chip that asserts a reset signal during all power-up when invalid

• Dallas Semiconductor DS1233 chip

•  µP is prevented from running when system voltage is invalid

• Memory protected against activity of 68HC11 during danger

68HC11 with the Handy Board Hardware

NAND: when all three
signals are logic one,
memory is enabled for
operation
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Peripherals
• Port E - 8 analog input signals

– Interfaces with knob on HB and
provides 7 user sensor ports

• Port A - 8 counter/timer lines
– 4 pins available for sensor ports and

output

• Connecting to additional motors and
digital inputs

– Use 8-bit Latches for I/O,   connected to
devices

– Connected to memory bus of 68HC11
(appear like location in memory)

– R/W to/from memory location causes
data to be R/W from/to latch

– 74HC374 output latch for driving motor
circuit

– 74HC244 input latch for receiving info
from digital sensors

68HC11 with the Handy Board Hardware
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Peripherals
• Address Decoding (when memory

access should go to latches)
– Write to $7000 controls the motors

– Reading from $7000 receives byte of
info from digital sensors

• Address Decoding Circuitry
– Looks at address lines, R/W line, E

Clock

– Decides to enable Motor Output
Latch (write) or Digital Input Latch
(read)

68HC11 with the Handy Board Hardware

$7000 is location of HB’s motor output latch;
upper 4 bits determine which motor ports on,
lower 4 bits determine motors’ direction

LDAA #$F0  load $F0 into A register
STAA $7000 store A reg to motor port;

     all 4 motors turn on
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Select
Inputs

Enable
Inputs

Control Outputs

Motor Output Latch
Digital Sensor
Latch

Expansion Bus

Peripherals
• Memory Mapping with 74HC138 Chip

– Latches are mapped to a particular
address in the processor’s memory

– 74HC138 3-to-8 address decoder

– Select Inputs cause one of 8 possible
outputs to be selected (Control
Outputs)

– Enable Inputs  must all be enabled to
make chip active

– Outputs control sensor input and
motor output latches

– Read data from data bus (motor output
latch)

– Write data onto the data bus (sensor
input latch)

68HC11 with the Handy Board Hardware

}
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Peripherals
• Enable Inputs

– Determine when the chip will become
active

– Turn on one of I/O latches

– Critical that 74HC138 and RAM chip
not active at same time - bus contention

– A15 must be zero (RAM enabled when
it is one) and A14 must be 1 to activate
74HC138

– E Clock  turns on 74HC138 at
appropriate time

• Select Inputs
– ABC inputs determine which device

connected to outputs will be activated

– A13 and A12 must be 1, then R/~W  line
makes selection (1 read, 0 write)

– Thus, digital input chip is selected by a
read from any address $7000 to $7FFF

68HC11 with the Handy Board Hardware

Select
Inputs

Enable
Inputs

Control Outputs

Motor Output Latch
Digital Sensor
Latch

Expansion Bus}
• Read

– ABC = 7

– Y7 output activated

– 74HC244 (sensor input) chip turns on
and drives a byte onto data bus

• Write
– ABC = 6

– Y6 output activated

– 74HC374 (motor control) chip latches
value present on data bus
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Peripherals
• System Memory Map Summary

– 32K RAM takes up half of total address space

• $8000 to $FFFF  upper half

– 4 digital input and output ports mapped at locations
starting at

• $4000, $5000, $6000, $7000

– 64 internal special function registers

• $1000 to $103F

– Internal RAM

• $0000 to $00FF

• Memory Schematics - see Motorola M68HC11
reference manual

68HC11 with the Handy Board Hardware
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Analog Inputs
• Port E register has 8 analog input

pins
– Ports 0 - 6 available sensor

inputs

– Port 7 for user knob

• A/D Conversion: 0-5v converted
into 8-bit number 0-255

– Enable A/D subsystem by
setting high bit in OPTION
register

– Write number of input pin to be
converted to ADCTL register

– Wait 32 machine cycles for
analog conversion process to
take place

– Read answer out of ADR1
register

68HC11 with the Handy Board Hardware

* demonstration of analog conversion
ADCTL equ $1030  ; A/D Control/Status register
ADR1 equ $1031 ; A/D Result register 1
OPTION equ $1039 ; System Configuration Options register

org $8000
start

lds #$ff ; establish stack for subr calls
ldx #$1000  ; register base ptr
bset OPTION,X $80 ; enable A/D subsystem!

loop
ldab #7  ; knob is port E7
bsr analog ; get analog reading
stab $7000  ; write it to motor port
bra  loop

analog
stab ADCTL ; begin analog conversion

* wait 32 cycles for analog reading to happen
ldaa #6 ; 2

waitlp deca ; 2
bne waitlp  ; 3
ldab ADR1 ; get analog read
rts ; b has reading, a has 0
org $bffe ; reset vector
fdb start
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Serial Line Circuit
• HB communicates with host

computer over RS-232 serial line

• RS-232 standard comm protocol
– TxD, transmit data

– RxD, receive data

– GND, signal ground

– Baud rate = bps transmitted

• Serial Interface/Battery Charger
board performs voltage
conversion

68HC11 with the Handy Board Hardware
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LCD Display
• First 14 pins of HB’s Expansion bus are designed to be compatible with 14-pin

LCD standard interface
– 8-bit data bidirectional bus

– 2 mode select input signals

– clock line

– voltage reference for contrast adjustment

– +5v logic power and signal ground

• Works for data transfer rates up to 1MHz only
– 68HC11 operates at 2MHz - too fast

– HB solves problem by dynamically switching between 68HC11’s modes
• single chip mode for talking to the LCD

• expanded multiplexed mode for normal operation

• Single chip mode
– Upper-8-bit address bus and multiplexed address/data bus become general purpose

I/Os of 68HC11

– 68HC11 can no longer execute a program from external RAM; can execute a
program from internal RAM (256 bytes)

68HC11 with the Handy Board Hardware
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Piezo Beeper
• HB beeper connected to pin 31 of 68HC11

– Bit 3 of Port A, Timer Output 5 (TOC5) pin

– To generate tone on beeper: toggle TOC5 pin back and forth from 1 to
0

Interrupt Routines
• 68HC11’s timer/counter hardware allows TOC5 output pin to

automatically toggle state after a particular period of time and generate an
interrupt to schedule the next toggle point

• Disable & re-enable interrupts during timing-sensitive tasks

68HC11 with the Handy Board Hardware
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Complete
“life cycle”
of an
interrupt
routine’s
execution

68HC11 with the Handy Board Hardware

During the execution of a program’s main code, an external event occurs that generates an interrupt
(#1). The 68HC11 then saves all processor registers (#2), and fetches the interrupt vector depending
on which interrupt it was (#3). This vector points at an interrupt routine, and execution begins there
(#4). When the interrupt service routine has completed its work, it signals that it’s done by
executing the RTI return from interrupt instruction (#5). Then the 68HC11 restores all of the
registers from the stack (#6), and picks up execution of the main code where it left off (#7).


