
1

Autonomous Mobile Robots

Lecture 02: Inside the Handy
Board

Lecture is based on material from Robotic Explorations: A Hands-on Introduction to Engineering, Fred Martin, Prentice Hall, 2001.

Copyright Prentice Hall, 2001 2

Outline
• Introduction to

Microprocessors and the
Motorola 68HC11

– Bits, Bytes and Characters

– Memory Map

– Registers

– Evaluation Sequence

– Machine Code vs. Assembly
Language

– Addressing Modes

– Arithmetic Operations

– Signed and Unsigned Binary
Numbers

– Condition Code Register and
Conditional Branching

– Stack Pointer and Subroutine Calls

– Interrupts and Interrupt Routines

• The 68HC11 with the
Handy Board Hardware

– Architecture of the 68HC11

– Microprocessor and Memory

– Peripherals

– Analog Inputs

– Serial Line Circuit

– LCD Display

– Piezo Beeper and Interrupt Routines

2

Copyright Prentice Hall, 2001 3

• Motorolla Chip: Read the 6.270 Hardware Reference Manual (from
MIT LEGO Robot Course - linked on course web page)

• Inside the Handy Board: Read Appendices A and D of Robotic
Explorations (textbook) and pp. 46 - 62 of The Handy Board Technical
Reference Manual.

Homework #2

Copyright Prentice Hall, 2001 4

Bits, Bytes and Characters:
• Computers process binary digits, or bits

• Microprocessors group bits into words

• Eight-bit words are called bytes

– 28 = 256 different states can be represented, e.g.,

– natural number from 0 to 255

– integer in the range of -128 to +127

– character of data (letter, number, printable symbol)

• 16-bit words have 216 = 65536 different values

Introduction to Microprocessors and the Motorola 68HC11

Intel invented the modern microprocessor in 1970 - Intel 4004

3

Copyright Prentice Hall, 2001 5

Bits, Bytes and Characters:
• Hexadecimal numbering system

– 16 different digits to represent each place value of a
numeral

– A - F used to represent the values of (decimal) 10
through 15, respectively

• 4 bits = 1 hex digit

• 1 byte = 2 hex digits

• 16-bit word = 4 hex digits

• Convention used for 68HC11

– prefix % for binary numbers

– prefix $ for hexadecimal numbers

– no prefix for decimal numbers

Introduction to Microprocessors and the Motorola 68HC11

Copyright Prentice Hall, 2001 6

Bits, Bytes and Characters:
• ASCII (American Standard Code for Information Interchange)

– 1 byte used to represent 1 (English) character

– Upper & lower case letters, numbers, punctuation

– 128 ASCII characters using values $00 to $1F

– Important for displaying message over the serial line or on the LCD
screen of the Handy Board

Introduction to Microprocessors and the Motorola 68HC11

4

Copyright Prentice Hall, 2001 7

Introduction to Microprocessors and the Motorola 68HC11

Copyright Prentice Hall, 2001 8

Memory Map:
• Microprocessors store programs and data in memory, which is organized as

a contiguous array of addresses

• Each memory address contains 8 bits (1 byte) of data

• Entire amount of memory accessible is called address space

• 68HC11 has 65,536 memory locations, or 16 bits of address information

– 16-bit numeral can be used to point at (address) any of the memory
bytes in the address space

– 4 hex digits can exactly specify one memory location, where there is
one byte of information

– Most of address space is unallocated, allowing for devices such as
external memory to be addressed

Introduction to Microprocessors and the Motorola 68HC11

5

Copyright Prentice Hall, 2001 9

Memory Map:
• Specialized portion: Left Column

– 256 bytes of internal RAM, $0000 to $00FF

– 64 bytes for register bank, $1000 to $103F,
used for controlling hardware features of
68HC11

– 32 bytes for interrupt vectors, $BFC0 to
$BFFF, in which are stored 2-byte pointers
to code to be executed when various events
occur

• Handy Board portion: Right Column

– Digital Sensor and motor circuitry, $7000 to
$7FFF, memory reads will retrieve values of
6 digital input lines and 2 user buttons;
memory writes control 4 motor outputs

– External RAM, $8000 to $FFFF, preserved
when power turned off

Introduction to Microprocessors and the Motorola 68HC11

Copyright Prentice Hall, 2001 10

68HC11 Registers
Microprocessor moves data from

memory to internal registers,
processes it, then copies back into
memory

Introduction to Microprocessors and the Motorola 68HC11

• Accumulators
– Perform most arithmetic operations, logical and bit operations

– Results placed back into a register, e.g., “add something to A register”

• Index Registers
– Point to data that is located in memory, e.g., register X indexes number

added to sum

• Stack Pointer (SP register)
– Stores location of the program stack

– Used for temporary storage of data

– Stores return address when a subroutine is called

• Program Counter
– Keeps track of current instruction being executed

6

Copyright Prentice Hall, 2001 11

Evaluation Sequence
• When a microprocessor runs a program, it advances sequentially through

memory, fetching and executing one instruction at a time
– PC register keeps track of address of current instruction

– Microprocessor automatically advances PC to next instruction after finishing current
execution

• Example: (hex) 86 nn
– $86 is operational code (op-code), meaning “load A register”

– nn is byte to be loaded

– Two-cycle instruction ==> takes 1.0 µsec real time to execute

• Instructions can be 1 - 4 bytes long, take varying numbers of machine cycles to
execute, depending on complexity

– 68HC11 in Handy Board operates at 8 MHz (8 million cycles per second)

– Frequency is divided into 4 clock phases to yield a machine cycle rate of 2 million
machine cycles per second

• Period of a machine cycle = 0.5 µsec real time to execute

Introduction to Microprocessors and the Motorola 68HC11

Copyright Prentice Hall, 2001 12

Machine Code vs. Assembly Language
• The program that is executed directly by the microprocessor

• Machine Code
– Raw data stored as a microprocessor’s program

– Hexadecimal notation

• Object Code
– The file that represents the bytes to be run on the microprocessor

• Assembly Language
– Set of mnemonics (names) and a notation that is readable/efficient way of writing

down the machine instructions

– LDAA #80 - Load Accumulator A with $80 (A is 1-byte register: value must be $0 to
$FF)

Introduction to Microprocessors and the Motorola 68HC11

Assembler
Program

microprocessor
Assembly-language

program

Machine/Object
code

LDAA #$80

7

Copyright Prentice Hall, 2001 13

Address Modes
• Immediate

– LDAA #$80 (load A register with hex
number $80)

– Data is part of instruction; must use prefix
#

• Direct

– STAA $80 (store A register to memory
location $0080)

– Data is located in zero page (internal
RAM $0000 to $00FF)

• Extended

– STAA #$1000 (store contents of A
register at memory location $1000)

– Location of data specified by 16-bit
address given in instruction

Introduction to Microprocessors and the Motorola 68HC11

• Indexed
– LDAA 5, x (load A register with

memory byte located at address that is
the sum of the value currently in X
register and 5)

– Offsets in the range 0 to 255 allowed

– Most useful when working with arrays

• Inherent

– TAB (transfer contents of A register to
B register)

– Data does not require external memory
address

• Relative

– BRA 5 (skip five bytes ahead in the
instruction stream)

Copyright Prentice Hall, 2001 14

Arithmetic Operations
• 68HC11 provides instructions that work on both 8-bit and 16-bit data values

• Addition - both

• Subtraction - both

• Multiplication - of two 8-bit values to yield a 16-bit value

• Division - of two 16-bit values to yield an integer or fractional result

• Increment - both

• Decrement - both

• Logical AND - 8-bit values (result 1 iff both operands are 1)

• Logical OR - 8-bit values (result is 1 if either or both operands are 1)

• Logical Exclusive OR - 8-bit values (result is 1 if either but not both operands are 1)

• Arithmetic Shift Operations - both (shift left = multiply by 1; shift right = divide by 2)

• Rotation Operations - 8-bit values

• Bitwise Set and Clear Operations - 8-bit values or registers

Introduction to Microprocessors and the Motorola 68HC11

8

Copyright Prentice Hall, 2001 15

Signed and Unsigned Binary Numbers
• 68HC11 uses

– Unsigned binary format

• Represents numbers in the range 0 to 255 (one byte of data) or 0 to
65535 (one word of data)

– Two’s complement signed binary format

• Byte represented as -128 to +127

• Word represented as -32768 to +32767

• Highest bit of number is used to represent the sign: 0 for +/0, 1 for -

Introduction to Microprocessors and the Motorola 68HC11

Binary Decimal
%0000 0
%0110 6
%11111111 255

%10011011 signed number
 %0011011 significant digits
 %1100100 invert them
 %1100101 add one
= decimal -101

Copyright Prentice Hall, 2001 16

Condition Code Register (CCR) and Conditional Branching
• Condition Codes are produces when any type of arithmetic or logical operation is

performed and indicate the following (1-bit flag in CCR is 1 if condition is true) :

– Z - Result of operation was zero

– V - Result overflowed the 8- or 16-bit data word it was supposed to fit in

– N - Result was negative value

– C - Result generated a carry out of the highest bit position, e.g., 2 numbers added and
result is too large to fit into one byte

• Conditional Branching on Flags

– BEQ - Branch if Equal to Zero (signed and unsigned data)

– BNE - Branch if Not Equal to Zero (both)

– BLO - Branch if Lower - branch if number in register was smaller than number
subtracted from it (unsigned data only)

– BHI - Branch if Higher (unsigned data only)

– JMP - Jump to destination in memory (2-byte address)

Introduction to Microprocessors and the Motorola 68HC11

loop DECA
BNE loop
….

9

Copyright Prentice Hall, 2001 17

Stack Pointer and Subroutine Call
• Stack stores data in a Last-In, First-Out (LIFO) method

– Stack Pointer (SP) is special register to keep track of location of stack in RAM;
initialized to top of RAM: $FFFF for Handy Board

– PSHA - Stack Push - value placed on stack: value is stored in memory at the current
address of SP; SP is advanced to the next position in memory

– PULA - Stack Pull - SP regressed to last location stored; value at that memory
location is retrieved

– Useful for temporary storage of data and for subroutine calls

• Subroutines are pieces of code that may be called by main program or by other
subroutines

– Use stack to know where to return when subroutine finishes:

• Subroutine called, 68HC11 pushes return address onto the stack, 68HC11 branches to begin
executing subroutine, when subroutine finished 68HC11 pulls return address off stack and
branches to that location

– Nested subroutine calls

Introduction to Microprocessors and the Motorola 68HC11

PSHA
PSHB
PULB
PULA

Copyright Prentice Hall, 2001 18

Interrupts and Interrupt Routines
• Interrupt Routines are a type of subroutine that gets executed when interrupts happen

– 68HC11 stops, saves local state (content of all registers saved on the stack), processes the
interrupt code, returns to main code exactly where it left off (no information is lost)

– Interrupt servicing is automatic

– Cannot interrupt an interrupt - interrupts are queued and processed sequentially

• Interrupt Vector points to the starting address of the code associated with each
interrupt

– Upon an interrupt, 68HC11 finds its associated interrupt vector, then jumps to the address
specified by the vector

– Interrupt Vectors are mapped from $BFC0 through $BFFF on the Handy Board

– 2 bytes needed for each vector ==> 32 total interrupt vectors

– Location is predetermined

• e.g., RESET vector is located at $BFFE and $BFFF (points to start of main code)

Introduction to Microprocessors and the Motorola 68HC11

10

Copyright Prentice Hall, 2001 19

Architecture of the 68HC11
• CPU Core communicates with 4

hardware units

• 5 communication ports

– Data written to particular port appears
as voltage levels on real pins
connected to that port

– 68HC11 can interface with external
devices (memory circuit, motor chips,
off-board sensor devices)

• Port A

– Digital, bidirectional port, providing
specialized timer and counter circuitry

– HB: 4 of 8 signals used for on-board
features

68HC11 with the Handy Board Hardware

Recall: register block in memory $1000 to $103F used to interface with these special functions

• piezo beeper

• input from on-board IR sensor

• IR output circuit

• LCD screen

– Remaining 4 free for project use

• 3 inputs for user sensor ports

• 1 output on expansion bus connector

Copyright Prentice Hall, 2001 20

Architecture of the 68HC11
• Port B

– Digital port used for output only

– HB: port acts as the upper half of the
address bus for interfacing with 32K
external memory

• Port C
– Digital, bidirectional port

– HB: port used for multiplexed lower
memory address and the data bus

• Port D
– Bidirectional port dedicated to

communication functions

– 2 pins used for RS-232
communications with desktop
computer

– Other 4 pins open for HB design
• Intended for high-speed networking

68HC11 with the Handy Board Hardware

• Port E
– Analog input port

– A/D converter converts voltages on
this port to 8-bit numbers for the CPU

– HB: 7 of 8 pins wired to analog sensor
connector; 8th pin is connected to a
user knob

11

Copyright Prentice Hall, 2001 21

Microprocessor and Memory
• Address Bus

– 15 wires controlled by µP to select a
particular location in memory for R/W

– HB: memory chip is 32K RAM

– 15 wires (215 = 32768) needed to uniquely
specify memory address for R/W

• Data Bus
– 8 wires used to pass data between µP and

memory, 1 byte at a time

– Data written to memory: µP drives wires

– Data read from memory: memory drives

• Read/Write Control Lines
– 1 wire driven by microprocessor to control

function of memory

– +5v for memory read operation

– 0v for memory write operation

68HC11 with the Handy Board Hardware

• Memory Enable Control Lines
– 1 wire (E clock) connects to the enable

circuitry of the memory

– When memory is enabled, it performs
R/W, as determined by the R/W line

Computer = µµP (executes instructions) + memory (stores instructions and other data)

Copyright Prentice Hall, 2001 22

Microprocessor and Memory
• Multiplexing Data and Address Signals

– R/W: 8 data bus wires function also as address wires, transmit 8 lower-order bits of
address; then they function as data wires, receive/transmit data byte

– Upper 7 address bits - normal

– Lower 8 address bits are a multiplexed address/data bus, stored in 8-bit Latch (74HC373)

– Address Strobe tells latch when to grab hold of address values from address/data bus

– Process:
• Transmit lower address bits

• Latch bits

• R/W transaction with memory

68HC11 with the Handy Board Hardware

HB: uses A1 version of Motorola 68HC11

12

Copyright Prentice Hall, 2001 23

Microprocessor and Memory
• E Clock

– Synchronization signal generated by the 68HC11 that controls all memory operations

• Enable Circuitry
– HB uses 32K memory chip

– Address space of 68HC11 is 64K

– Enable RAM chip only for addresses within desired 32K range - use upper 32K of RAM

– How to enable RAM chip iff memory access is in upper half of 64K range?
• 16 address lines: A0 - A15

• A15 = logic 1, then A0 - A14 specify address in upper 32K of address space
• NAND together A15 line with E Clock (“negative true” enable) (NAND output TRUE only when

its two inputs are TRUE)

68HC11 with the Handy Board Hardware

Copyright Prentice Hall, 2001 24

Microprocessor and Memory
• Memory Power Switching Protection

– HB preserves contents of its RAM when power-off and power-on again

– RAM chip has power even when rest of HB is turned off

– RAM chip’s enable input is off when 68HC11 power supply is invalid (<4.5v)

• 68HC11 behavior is undefined
• Solution: use voltage monitoring chip that asserts a reset signal during all power-up when invalid

• Dallas Semiconductor DS1233 chip

• µP is prevented from running when system voltage is invalid

• Memory protected against activity of 68HC11 during danger

68HC11 with the Handy Board Hardware

NAND: when all three
signals are logic one,
memory is enabled for
operation

13

Copyright Prentice Hall, 2001 25

Peripherals
• Port E - 8 analog input signals

– Interfaces with knob on HB and
provides 7 user sensor ports

• Port A - 8 counter/timer lines
– 4 pins available for sensor ports and

output

• Connecting to additional motors and
digital inputs

– Use 8-bit Latches for I/O, connected to
devices

– Connected to memory bus of 68HC11
(appear like location in memory)

– R/W to/from memory location causes
data to be R/W from/to latch

– 74HC374 output latch for driving motor
circuit

– 74HC244 input latch for receiving info
from digital sensors

68HC11 with the Handy Board Hardware

Copyright Prentice Hall, 2001 26

Peripherals
• Address Decoding (when memory

access should go to latches)
– Write to $7000 controls the motors

– Reading from $7000 receives byte of
info from digital sensors

• Address Decoding Circuitry
– Looks at address lines, R/W line, E

Clock

– Decides to enable Motor Output
Latch (write) or Digital Input Latch
(read)

68HC11 with the Handy Board Hardware

$7000 is location of HB’s motor output latch;
upper 4 bits determine which motor ports on,
lower 4 bits determine motors’ direction

LDAA #$F0 load $F0 into A register
STAA $7000 store A reg to motor port;

 all 4 motors turn on

14

Copyright Prentice Hall, 2001 27

Select
Inputs

Enable
Inputs

Control Outputs

Motor Output Latch
Digital Sensor
Latch

Expansion Bus

Peripherals
• Memory Mapping with 74HC138 Chip

– Latches are mapped to a particular
address in the processor’s memory

– 74HC138 3-to-8 address decoder

– Select Inputs cause one of 8 possible
outputs to be selected (Control
Outputs)

– Enable Inputs must all be enabled to
make chip active

– Outputs control sensor input and
motor output latches

– Read data from data bus (motor output
latch)

– Write data onto the data bus (sensor
input latch)

68HC11 with the Handy Board Hardware

}

Copyright Prentice Hall, 2001 28

Peripherals
• Enable Inputs

– Determine when the chip will become
active

– Turn on one of I/O latches

– Critical that 74HC138 and RAM chip
not active at same time - bus contention

– A15 must be zero (RAM enabled when
it is one) and A14 must be 1 to activate
74HC138

– E Clock turns on 74HC138 at
appropriate time

• Select Inputs
– ABC inputs determine which device

connected to outputs will be activated

– A13 and A12 must be 1, then R/~W line
makes selection (1 read, 0 write)

– Thus, digital input chip is selected by a
read from any address $7000 to $7FFF

68HC11 with the Handy Board Hardware

Select
Inputs

Enable
Inputs

Control Outputs

Motor Output Latch
Digital Sensor
Latch

Expansion Bus}
• Read

– ABC = 7

– Y7 output activated

– 74HC244 (sensor input) chip turns on
and drives a byte onto data bus

• Write
– ABC = 6

– Y6 output activated

– 74HC374 (motor control) chip latches
value present on data bus

15

Copyright Prentice Hall, 2001 29

Peripherals
• System Memory Map Summary

– 32K RAM takes up half of total address space

• $8000 to $FFFF upper half

– 4 digital input and output ports mapped at locations
starting at

• $4000, $5000, $6000, $7000

– 64 internal special function registers

• $1000 to $103F

– Internal RAM

• $0000 to $00FF

• Memory Schematics - see Motorola M68HC11
reference manual

68HC11 with the Handy Board Hardware

Copyright Prentice Hall, 2001 30

Analog Inputs
• Port E register has 8 analog input

pins
– Ports 0 - 6 available sensor

inputs

– Port 7 for user knob

• A/D Conversion: 0-5v converted
into 8-bit number 0-255

– Enable A/D subsystem by
setting high bit in OPTION
register

– Write number of input pin to be
converted to ADCTL register

– Wait 32 machine cycles for
analog conversion process to
take place

– Read answer out of ADR1
register

68HC11 with the Handy Board Hardware

* demonstration of analog conversion
ADCTL equ $1030 ; A/D Control/Status register
ADR1 equ $1031 ; A/D Result register 1
OPTION equ $1039 ; System Configuration Options register

org $8000
start

lds #$ff ; establish stack for subr calls
ldx #$1000 ; register base ptr
bset OPTION,X $80 ; enable A/D subsystem!

loop
ldab #7 ; knob is port E7
bsr analog ; get analog reading
stab $7000 ; write it to motor port
bra loop

analog
stab ADCTL ; begin analog conversion

* wait 32 cycles for analog reading to happen
ldaa #6 ; 2

waitlp deca ; 2
bne waitlp ; 3
ldab ADR1 ; get analog read
rts ; b has reading, a has 0
org $bffe ; reset vector
fdb start

16

Copyright Prentice Hall, 2001 31

Serial Line Circuit
• HB communicates with host

computer over RS-232 serial line

• RS-232 standard comm protocol
– TxD, transmit data

– RxD, receive data

– GND, signal ground

– Baud rate = bps transmitted

• Serial Interface/Battery Charger
board performs voltage
conversion

68HC11 with the Handy Board Hardware

Copyright Prentice Hall, 2001 32

LCD Display
• First 14 pins of HB’s Expansion bus are designed to be compatible with 14-pin

LCD standard interface
– 8-bit data bidirectional bus

– 2 mode select input signals

– clock line

– voltage reference for contrast adjustment

– +5v logic power and signal ground

• Works for data transfer rates up to 1MHz only
– 68HC11 operates at 2MHz - too fast

– HB solves problem by dynamically switching between 68HC11’s modes
• single chip mode for talking to the LCD

• expanded multiplexed mode for normal operation

• Single chip mode
– Upper-8-bit address bus and multiplexed address/data bus become general purpose

I/Os of 68HC11

– 68HC11 can no longer execute a program from external RAM; can execute a
program from internal RAM (256 bytes)

68HC11 with the Handy Board Hardware

17

Copyright Prentice Hall, 2001 33

Piezo Beeper
• HB beeper connected to pin 31 of 68HC11

– Bit 3 of Port A, Timer Output 5 (TOC5) pin

– To generate tone on beeper: toggle TOC5 pin back and forth from 1 to
0

Interrupt Routines
• 68HC11’s timer/counter hardware allows TOC5 output pin to

automatically toggle state after a particular period of time and generate an
interrupt to schedule the next toggle point

• Disable & re-enable interrupts during timing-sensitive tasks

68HC11 with the Handy Board Hardware

Copyright Prentice Hall, 2001 34

Complete
“life cycle”
of an
interrupt
routine’s
execution

68HC11 with the Handy Board Hardware

During the execution of a program’s main code, an external event occurs that generates an interrupt
(#1). The 68HC11 then saves all processor registers (#2), and fetches the interrupt vector depending
on which interrupt it was (#3). This vector points at an interrupt routine, and execution begins there
(#4). When the interrupt service routine has completed its work, it signals that it’s done by
executing the RTI return from interrupt instruction (#5). Then the 68HC11 restores all of the
registers from the stack (#6), and picks up execution of the main code where it left off (#7).

