
1

Autonomous Mobile Robots

Lecture 01: Introduction

Lecture is based on material from Robotic Explorations: A Hands-on Introduction to Engineering, Fred Martin, Prentice Hall, 2001.

Copyright Prentice Hall, 2001 2

Acknowledgement

This collection of eight lectures was prepared for the Autumn 2000 EE462
class, “Principles of Mobile Robots,” at the University of Washington

using Fred Martin’s pre-publication text, Robotic Explorations: A
Hands-on Introduction to Engineering, Prentice Hall, 2001.

The PowerPoint slides were created by Dr. Linda Bushnell,
bushnell@ee.washington.edu

Please see the EE462 course web site for more information on the
syllabus, laboratory assignments, homework assignments, and links:

http://www.ee.washington.edu/class/462/bushnell/

2

Copyright Prentice Hall, 2001 3

Outline

• Introduction to the Course

• The Technology

• The Laboratory

• Lab Assignment #1 - building the HandyBug

• Braitenberg Vehicles

• The Interactive C Language

• MIT 6.270 Autonomous Robot Design Competition videos

Copyright Prentice Hall, 2001 4

• Motivation for Class: Read Chapter 1 of Robotic Explorations
(textbook)

• Interactive C: Read Appendix E of Robotic Explorations
(textbook) and pp. 1-37 of The Handy Board Reference Manual.

• A First Robot: Read Chapter 2 of Robotic Explorations (textbook)

Homework #1

3

Copyright Prentice Hall, 2001 5

• Course Description:
– This course uses LEGO beams, plates, gears, motors, the Handy

Board microcontroller board programmed in Interactive C and
various sensors to construct autonomous mobile robots.

– The first half of the course contains four structured laboratory
exercises in LEGO mechanics, software design, sensor and motor
principles and control.

– The second half of the course laboratory is spent designing mobile
robots that can compete in a competition.

– The lectures will focus on IC, the Handy Board, motors, sensors,
and various control methodologies.

Introduction

Copyright Prentice Hall, 2001 6

• Goals:
− Integrated design (mechanics, electronics, software)

− Control systems (PID vs. Algorithmic vs. Reactive)

− Interdisciplinary teamwork and problem-solving

• Topics:

– Programming the Handy Board using Interactive C

– Mechanical construction using LEGOs

– Motors

– Sensors and Advanced Sensing

– PID control, Algorithmic control, Reactive control

Introduction

4

Copyright Prentice Hall, 2001 7

• Textbook:
– Robotic Explorations: A Hands-on Introduction to Engineering, Fred

Martin, Prentice Hall, 2001.

• Reference Textbook:
– J. L. Jones, A. M. Flynn and B. A. Seiger, Mobile Robots: Inspiration to

Implementation, A.K. Peters, 2nd Edition, 1999.

• Other Documents:
– Handy Board Reference Manual

– Interactive C Manual (Chapter 5 of HB Reference Manual)

– “The Art of LEGO Design,” by Fred Martin

– 6.270 Hardware Reference Manual (from MIT LEGO Robot course)

– M68HC11 Reference Manual (Motorola Microprocessor)

– Various papers to be assigned for reading

Introduction

Copyright Prentice Hall, 2001 8

• Homework:
– There will be 8 homeworks based on the lecture material.

• Lab Assignments:

– The first six weeks will have structured laboratory assignments:

• Week 1 & 2: Form teams of 2-3; Construct LEGO HandyBug and
program using Interactive C

• Week 3: Motors

• Week 4: Sensors

• Week 5 & 6: PID Control, polarized light sensing, data collection

– A lab report will be due after the lab is completed.

– The remainder will be unstructured lab time where you will design,
build and test a mobile robot for the competition.

Introduction

5

Copyright Prentice Hall, 2001 9

• The Competition:
– Each team will design, construct and test a mobile robot that will be

competed at the end of the class (date TBD).

– Maze with three paths, each requiring different robot features:

• Line following

• Obstacle course

• Ferry crossing

S

F

Fe
rr

yObstacle
Course

Introduction

Copyright Prentice Hall, 2001 10

• Hardware: Handy Board - hand-held microprocessor-based
robot control board. Ideal for controlling small, mobile
robots.

• Software: Interactive C - custom software environment for
the Handy Board.

• Mechanism: LEGO Technic system - extension of LEGO
building brick system for constructing mobile robot.

The Technology

6

Copyright Prentice Hall, 2001 11

• The Handy Board:
– Motorola 68HC11 8-bit microprocessor

– 32K main system memory, battery-
protected (allows the use of Interactive C)

– Output drivers for 4 DC motors (9v, 1A)

– Inputs for analog and digital sensors; up to
7 analog sensors and 9 digital sensors

– Internal, rechargeable battery pack (in
case)

– LCD screen (16 character, 2-line liquid
crystal display screen)

Easy to attach motors and sensors

The Technology

Copyright Prentice Hall, 2001 12

• The Expansion Board:

– 10 additional analog sensor
inputs

– 4 inputs for active LEGO
sensors (reflectance sensor and
shaft encoder)

– 9 digital outputs

– 6 servo motor control signals
with power supply from the
Handy Board's internal battery

– optional external power for
servo motors

– connector mount for Polaroid
6500 ultrasonic ranging system

– general-purpose electrical
prototyping area

– pass-through connector for the
Handy Board's LCD screen

The Technology

7

Copyright Prentice Hall, 2001 13

• Interactive C:

– C-language compiler developed for robotic applications (by Randy
Sargent)

– Interactivity - command-line console that allows user to type
expressions and function calls interactively, even when other programs
are running - easier to try out ideas

– Stability - IC reports a runtime error for common programming
problems (divide-by-zero, out-of-bounds array reference, etc.) rather
than crashing the system

– Multi-tasking - multiple programs running simultaneously (up to 12)

Alternatives: program Handy Board directly in 68HC11 machine language

The Technology

Copyright Prentice Hall, 2001 14

• LEGO Technic:

– Technic is LEGO’s brand name
for the mechanized portion of
the product line

– Includes: beams, bricks, axles,
gears, motors and other parts
for construction of complex and
functional mechanical systems

– No need to learn tools in a
machine shop

– Use cross-beams to lock design
in place

Alternatives: Fischertechnik (more rigid,
industrial), Modified RC cars, Scrap
materials

The Technology

8

Copyright Prentice Hall, 2001 15

• Robot Station:

– PC with serial port

– Handy Board controller

– Serial interface and battery charger unit for Handy Board

– Phone cable (RJ11 modular cable) for connecting PC to Handy Board

– Power adapter for Handy Board

– Handy Board Technical Manual (on-line)

– Expansion Board

– Sensor/Motor kit

– Interactive C

– LEGO Technic Resource Set

– Gear-reduction, servo and micro motors

The Laboratory

Copyright Prentice Hall, 2001 16

The HandyBug

– Build the HandyBug

– Program with IC

Lab Assignment #1

9

Copyright Prentice Hall, 2001 17

• Building the HandyBug:

– 2 motors (9v LEGO motors)

– 2 sensors (touch sensors)

– Carries Handy Board

– Plans given in lab handout

– Turtle configuration: separate left-side
and right-side motor drives

Schematic of LEGO Turtle Robot

Lab Assignment #1

The HandyBug

Copyright Prentice Hall, 2001 18

• Interactive C:

– C> beep();
• IC compiles line of code

• compiled code is downloaded via
serial line to the Handy Board

• IC tells Handy Board to execute
the code it has just received

• Handy Board beeps

– Valid C statement:
• function call (“beep”)

• parentheses contain arguments
(parameters) to the function call

• trailing semicolon is end-of-
statement marker

Lab Assignment #1

The HandyBug

– Arithmetic expressions:

• C> 2 + 2; (executed by the
Handy Board)

– Multiple statements on one
line:

• C> {beep(); sleep(2.0);
beep();}

– Command to IC:
• C> load test.c

10

Copyright Prentice Hall, 2001 19

• Motors:

– IC has library files for controlling the motors and
sensors of the Handy Board

– Functions:
• fd(0); - Motor 0 output port turns on, green LED on,

motor spins

• bk(0); - motor spins in opposite direction

• off(0); - motor turns off

• motor(0,50); - turns motor port 0 on in the “fd”
direction with a power level of 50% (port can be 0, 1, 2,
3) (power level ranges from -100 to +100; 0 is off, +100
is full on in the “fd” direction)

– Handy Board uses Pulse Width Modulation (PWM) to
control the motors (turns on and off very quickly)

Lab Assignment #1
The HandyBug

Copyright Prentice Hall, 2001 20

• Sensors:

– Handy Board has inputs for 9 digital (switch-type) sensors and 7 analog
(continuously varying) sensors.

– Digital Sensors:
• Digital inputs # 7 to 15

• Test switch using digital(port#);
– digital(15); Handy Board returns True/1/switch closed or False/0/switch open.

– if (digital(15)) {beep();} Tests the state of the sensor.

Lab Assignment #1

The HandyBug

11

Copyright Prentice Hall, 2001 21

• Files and Functions:

– keyword void - indicates
function has no return value

– test: function name

– { definition of function }

– sleep - creates a delay

– semicolon after each statement

– save as test.c in IC folder

– C> load test.c (no semicolon)

– C>test(); (runs program)

– Result: motor 0 port turns on in
forward direction for 1 second,
switches to backward direction for 1
second, turns off, beeps.

Lab Assignment #1

The HandyBug

test.c

void test () {

fd(0);

sleep(1.0);

bk(0);

sleep(1.0);

off(0);

beep();

}

Copyright Prentice Hall, 2001 22

• Main Function:

– while(1) - infinite loop

– /*…*/ for comments

– printf - formatted print on
HB

– \n - newline before printing
next

– main() - HB automatically
loads when turned on

– to reset HB without running
main(), hold down START
button when turning on HB

Lab Assignment #1
The HandyBug

robot.c

/* sample robot program */

void main() {

while (1) {

printf(“Going forward…\n”);

fd(0);

if (digital(15)) {

printf(“Backing up…\n”);

bk(0);

beep();

sleep(2.0);

}

}

}

12

Copyright Prentice Hall, 2001 23

• Neuro-biologist Valentino Braitenberg,
Vehicles: Experiments into Synthetic Psychology
(1984). “how sentient creatures might have
evolved from simpler organisms”

• Vehicle 1: 1 Motor/1 Sensor

– Wire connects sensor to motor

– Sensor generates a signal
proportional to the strength of light

– When it “sees” a light source, it
starts moving in straight line

• Vehicle 2b: 2 Motors/2 Sensors

– Turns towards light source

– Reduces difference between
heading and brightest source of
light (negative feedback)

Braitenberg Vehicles

What happens if not
cross-wired?

Copyright Prentice Hall, 2001 24

• See web sites:

– http://pikas.inf.tu-dresden.de/compulog/lectures/winter99/lpisa/mod_1_12.html

for more information

– http://people.cs.uchicago.edu/~wiseman/vehicles/ for simulations

Braitenberg Vehicles

13

Copyright Prentice Hall, 2001 25

• C Language consisting of a compiler and a run-time machine language
module

– compiler has interactive command-line compilation and debugging

– user’s C code is converted into instructions for a specially-designed virtual
machine; Handy Board is programmed to interpret these instructions

– drawback to virtual machine approach: execution speed

• IC Commands:

– compile and load file: load <filename> (HB must be attached for this to work)

– unload file: unload <filename>

– list files, functions or globals: list files, list functions, list globals

– kill all processes: kill_all

– print process status: ps

– help, quit

The Interactive C Language

Copyright Prentice Hall, 2001 26

Data Types, Operations and Expressions:

• Variable names: case sensitive, use __ for readability

• Data Types supported by IC:

– 16-bit integer - int - signed integers from -32,768 to +32,767

– 32-bit integer - long - signed integers from -2,147,483,648 to +2,147,483,647

– 32-bit floating point number - float - seven decimal digits of precision from 10-

38 to 1038

– 8-bit characters - char - printable symbol using standard ASCII character code

• Local and Global Variables:

– Local: variable is declared within a function, or as an argument to a function

– Global: variable is declared outside of a function, for all functions

The Interactive C Language

14

Copyright Prentice Hall, 2001 27

Data Types, Operations and
Expressions:

• Variable Initialization:

– Local variables initialized when
function containing them runs

– Global variables initialized when
reset condition occurs:

• new code is downloaded

• main() is run

• system hardware reset occurs

The Interactive C Language

int foo()
{

int x; /* local variable with
initial value 0 */

int y=7; /* local variable with
initial value 7 */

…
}
float z=3.0; /* global variable with initial

value 3.0 */

Copyright Prentice Hall, 2001 28

Data Types, Operations and Expressions:
• Persistent Global Variables

– uninitialized

– initial value is arbitrary

– keep state when Handy Board turned on/off, when
main() is run, and when system reset occurs

– declare at beginning of code before any function or
non-persistent globals to prevent losing state

– used for

• calibration and configuration values that do
not need to be re-calculated on every reset
condition

• robot learning algorithms that might occur
over a period when the robot is turned on/off

The Interactive C Language

persistent int i;

15

Copyright Prentice Hall, 2001 29

Data Types, Operations and Expressions:
• Constants

– Integers: decimal (4053), hexadecimal (0x1fff)

– Long Integers (0L)

– Floating Point Numbers (10E3)

– Characters and Character Strings (‘x’, “string”)

• Operators

– Integers: arithmetic (+,-,*,/), comparison (>,<,==,>=,<=), bitwise arithmetic
(OR, AND, ex-OR, NOT), Boolean arithmetic (logical OR, AND, NOT)

– Long Integers: no bitwise and Boolean operations, no division

– Floating Point Numbers: Motorola fp routines

– Characters: only allowed in character arrays

• Assignment Operators (=) and Expressions

– a = a+2; or a += 2;

• Increment and Decrement Operators

– a++ same as a = a + 1 and a-- same as a = a - 1

The Interactive C Language

Copyright Prentice Hall, 2001 30

Control Flow:
• NOTE: case and switch control structures not

supported in IC

• Statements and Blocks -- use {}

• If-Else

• While: infinite loop is while (1)

• For

• Break

– exit from a while or a for loop

The Interactive C Language

if (expression)
 statement-1
else
 statement-2

while (expression)
 statement

int i;
for (i = 0; i <100; i++)
 printf(“%d\n”, i);

16

Copyright Prentice Hall, 2001 31

Printing on LCD Screen:
• a message

– \n is end of line

• a number

– %d is for decimal format

• a number in binary

– %b is for binary format

– low byte of number is printed

• a floating point number

– %f is for floating point format

• two numbers in hexadecimal format

– %x is for hexadecimal format
• NOTE:

– final character position on LCD screen is used as the
system “heartbeat” - continuously blinks when ok

– printf() treats 2-line LCD screen as one long line

– no support of printing long integers

The Interactive C Language

Printf(“Hello, world!\n”);

Printf(“Value is %d\n”, x);

Printf(“Value is %b\n”, x);

Printf(“Value is %f\n”, x);

Printf(“A=%x B=%x\n”, a, b);

Copyright Prentice Hall, 2001 32

Declaring and Initializing Arrays

The Interactive C Language

int foo[10];

int foo[] = {0, 4, 5, -8, 17, 301};

char string[] = “Hello there”;

int retrieve_element (int index, int array[])
{
 return array[index];
}

{
int array[10];
retrieve_element(3,array);
}

int *foo;
int x = 5;
int y;
foo = &x;
y = *foo;

Declaring Pointer Variables

Arrays (1D only) and Pointers:

Passing Arrays as Arguments Passing Pointers as Arguments

void avg_sensor (int port, int *result)
{
 int sum = 0;
 int i;
 for (i = 0, i < 10, i ++) sum += analog(port);
 *result = sum/10;
}

17

Copyright Prentice Hall, 2001 33

Library Functions:
• Output Control

– DC Motors

• motors 0, 1, 2, 3

• p=100 full on in fd direction

• p=-100 full on in bk direction

– Servo Motors

• Sensor Input

– sensors are active low

The Interactive C Language

void fd (int m)
void bk (int m)
void off (int m)
void alloff()
void ao()
void motor(int m, int p)

int digital (int p) * returns 1/0 value (true-active/false) *\
int analog (int p)

void servo_on()
void servo_off()
int servo(int period) * set length of servo control pulse *\
int servo_rad(float angle) * set angle in radians *\
int servo_deg(float angle) * set angle in degrees *\

fd((3);
bk(0);
off(1);

Copyright Prentice Hall, 2001 34

Library Functions:
• User Buttons and Knobs

• Time Commands

• Tone Functions

The Interactive C Language

int stop_button() * returns value of STOP *\
int start_button()
void stop_press() * waits for STOP to be pressed,

then released, then beeps *\
void start_press()
int knob() * returns knob position 0 to 255 *\

void reset_system_time()
long mseconds() * returns system time in msecs *\
float seconds()
void sleep(float sec)
void msleep(long msec)

void beep()
void tone(float freq, float length)
void set_beeper_pitch(float freq)
void beeper_on()
void beeper_off()

18

Copyright Prentice Hall, 2001 35

Multi-Tasking:
– Processes communicate through global variables

– Each process runs for a certain number of ticks, and has its own program stack

• Creating New Processes

• Destroying Processes

• Process Management

The Interactive C Language

int start_process(function-call(…), [ticks], [stack-size])

void check_sensor(int n)
{
 while (1)

printf(“Sensor %d is %d\n”, n, digital(n));
void main()
{ start_process(check_sensor(2), 1, 50);} * runs 1 ms with

stack size 50 *\

Void main()
{
 int pid;
 pid=start_process(check_sensor(2));
 sleep(1.0);
 kill_process(pid);
}

C>kill_all
C>ps

Copyright Prentice Hall, 2001 36

MIT 6.270 Autonomous Robot Design Competition Videos:

• 2000 “Bots in Blue” - Robo-CPs compete against each other to collect
unwanted hackers and throw them in the brig.

• 1999 “Raiders of the Lost Parts” - Roboarcheologists race to explore
the alien ruins and retrieve valuable artifacts.

• 1998 “RoboGolf” - Robotic golfers compete to become champion of a
post-apocalyptic world.

Available for purchase at: http://web.mit.edu/6.270/www/about/video.html

Video

