Floating-point Numbers ### Appendix B Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0 ## Principles of Floating Point (1) - Must separate range from precision - Use scientific notation n = f × 10^e - f is the fraction or mantissa - e is the exponent (a positive or negative integer) - Examples $$3.14 = 0.314 \times 10^{1} = 3.14 \times 10^{0}$$ $0.000001 = 0.1 \times 10^{-5} = 1.0 \times 10^{-6}$ $1941 = 0.1941 \times 10^{4} = 1.941 \times 10^{3}$ ## Principles of Floating Point (2) #### Seven Regions of Real Number Line - Large negative numbers less than −0.999 × 10⁹⁹. - Negative numbers between -0.999×1099 and -0.100×10^{-99} . - Small negative numbers, magnitudes less than 0.100×10^{-99} . - Zero. - Small positive numbers, magnitudes less than 0.100 × 10⁻⁹⁹. - Positive numbers between 0.100×10^{-99} and 0.999×1099 . - Large positive numbers greater than 0.999 × 10⁹⁹. Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0 # Principles of Floating Point (3) The real number line can be divided into seven regions. ## Principles of Floating Point (4) | Digits in fraction | Digits in exponent | Lower bound | Upper bound | |--------------------|--------------------|----------------------|--------------------| | 3 | 1 | 10 ⁻¹² | 10 ⁹ | | 3 | 2 | 10 ⁻¹⁰² | 10 ⁹⁹ | | 3 | 3 | 10 ⁻¹⁰⁰² | 10 ⁹⁹⁹ | | 3 | 4 | 10 ⁻¹⁰⁰⁰² | 10 ⁹⁹⁹⁹ | | 4 | 1 | 10 ⁻¹³ | 10 ⁹ | | 4 | 2 | 10 ⁻¹⁰³ | 10 ⁹⁹ | | 4 | 3 | 10 ⁻¹⁰⁰³ | 10 ⁹⁹⁹ | | 4 | 4 | 10 ⁻¹⁰⁰⁰³ | 10 ⁹⁹⁹⁹ | | 5 | 1 | 10 ⁻¹⁴ | 10 ⁹ | | 5 | 2 | 10 ⁻¹⁰⁴ | 10 ⁹⁹ | | 5 | 3 | 10 ⁻¹⁰⁰⁴ | 10 ⁹⁹⁹ | | 5 | 4 | 10 ⁻¹⁰⁰⁰⁴ | 10 ⁹⁹⁹⁹ | | 10 | 3 | 10 ⁻¹⁰⁰⁹ | 10 ⁹⁹⁹ | | 20 | 3 | 10 ⁻¹⁰¹⁹ | 10 ⁹⁹⁹ | The approximate lower and upper bounds of expressible (unnormalized) floating-point decimal numbers. Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0 ### IEEE Floating-point Standard 754 (1) Sign Excess 64 + exponent is 73 - 64 = 9 Fraction is $1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-5}$ Fraction is $1 \times 2^{-4} + 1 \times 2^{-5}$ Fraction is $1 \times 2^{-4} + 1 \times 2^{-5}$ Examples of normalized floating-point numbers. ### IEEE Floating-point Standard 754 (2) Example 2: Exponentiation to the base 16 To normalize, shift the fraction left 2 hexadecimal digits, and subtract 2 from the exponent. Normalized: 0 1000011 0001 1011 0000 0000 = $$16^3 (1 \times 16^{-1} + B \times 16^{-2}) = 432$$ Sign Excess 64 Fraction is $1 \times 16^{-1} + B \times 16^{-2}$ + exponent is $67 - 64 = 3$ #### Examples of normalized floating-point numbers. Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0 ### IEEE Floating-point Standard 754 (3) IEEE floating-point formats. (a) Single precision. (b) Double precision. ## IEEE Floating-point Standard 754 (4) | ltem | Single precision | Double precision | |------------------------------|---|---| | Bits in sign | 1 | 1 | | Bits in exponent | 8 | 11 | | Bits in fraction | 23 | 52 | | Bits, total | 32 | 64 | | Exponent system | Excess 127 | Excess 1023 | | Exponent range | -126 to +127 | -1022 to +1023 | | Smallest normalized number | 2 ⁻¹²⁶ | 2 ⁻¹⁰²² | | Largest normalized number | approx. 2 ¹²⁸ | approx. 2 ¹⁰²⁴ | | Decimal range | approx. 10 ⁻³⁸ to 10 ³⁸ | approx. 10 ⁻³⁰⁸ to 10 ³⁰⁸ | | Smallest denormalized number | approx. 10 ⁻⁴⁵ | approx. 10 ⁻³²⁴ | #### Characteristics of IEEE floating-point numbers. Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0 # IEEE Floating-point Standard 754 (5) ### IEEE numerical types.