Floating-point Numbers

Appendix B

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Principles of Floating Point (1)

- Must separate range from precision
- Use scientific notation n = f × 10^e
 - f is the fraction or mantissa
 - e is the exponent (a positive or negative integer)
- Examples

$$3.14 = 0.314 \times 10^{1} = 3.14 \times 10^{0}$$

 $0.000001 = 0.1 \times 10^{-5} = 1.0 \times 10^{-6}$
 $1941 = 0.1941 \times 10^{4} = 1.941 \times 10^{3}$

Principles of Floating Point (2)

Seven Regions of Real Number Line

- Large negative numbers less than −0.999 × 10⁹⁹.
- Negative numbers between -0.999×1099 and -0.100×10^{-99} .
- Small negative numbers, magnitudes less than 0.100×10^{-99} .
- Zero.
- Small positive numbers, magnitudes less than 0.100 × 10⁻⁹⁹.
- Positive numbers between 0.100×10^{-99} and 0.999×1099 .
- Large positive numbers greater than 0.999 × 10⁹⁹.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Principles of Floating Point (3)

The real number line can be divided into seven regions.

Principles of Floating Point (4)

Digits in fraction	Digits in exponent	Lower bound	Upper bound
3	1	10 ⁻¹²	10 ⁹
3	2	10 ⁻¹⁰²	10 ⁹⁹
3	3	10 ⁻¹⁰⁰²	10 ⁹⁹⁹
3	4	10 ⁻¹⁰⁰⁰²	10 ⁹⁹⁹⁹
4	1	10 ⁻¹³	10 ⁹
4	2	10 ⁻¹⁰³	10 ⁹⁹
4	3	10 ⁻¹⁰⁰³	10 ⁹⁹⁹
4	4	10 ⁻¹⁰⁰⁰³	10 ⁹⁹⁹⁹
5	1	10 ⁻¹⁴	10 ⁹
5	2	10 ⁻¹⁰⁴	10 ⁹⁹
5	3	10 ⁻¹⁰⁰⁴	10 ⁹⁹⁹
5	4	10 ⁻¹⁰⁰⁰⁴	10 ⁹⁹⁹⁹
10	3	10 ⁻¹⁰⁰⁹	10 ⁹⁹⁹
20	3	10 ⁻¹⁰¹⁹	10 ⁹⁹⁹

The approximate lower and upper bounds of expressible (unnormalized) floating-point decimal numbers.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

IEEE Floating-point Standard 754 (1)

Sign Excess 64 + exponent is 73 - 64 = 9 Fraction is $1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-5}$ Fraction is $1 \times 2^{-4} + 1 \times 2^{-5}$ Fraction is $1 \times 2^{-4} + 1 \times 2^{-5}$

Examples of normalized floating-point numbers.

IEEE Floating-point Standard 754 (2)

Example 2: Exponentiation to the base 16

To normalize, shift the fraction left 2 hexadecimal digits, and subtract 2 from the exponent.

Normalized: 0 1000011 0001 1011 0000 0000 =
$$16^3 (1 \times 16^{-1} + B \times 16^{-2}) = 432$$

Sign Excess 64 Fraction is $1 \times 16^{-1} + B \times 16^{-2}$
+ exponent is $67 - 64 = 3$

Examples of normalized floating-point numbers.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

IEEE Floating-point Standard 754 (3)

IEEE floating-point formats.
(a) Single precision. (b) Double precision.

IEEE Floating-point Standard 754 (4)

ltem	Single precision	Double precision
Bits in sign	1	1
Bits in exponent	8	11
Bits in fraction	23	52
Bits, total	32	64
Exponent system	Excess 127	Excess 1023
Exponent range	-126 to +127	-1022 to +1023
Smallest normalized number	2 ⁻¹²⁶	2 ⁻¹⁰²²
Largest normalized number	approx. 2 ¹²⁸	approx. 2 ¹⁰²⁴
Decimal range	approx. 10 ⁻³⁸ to 10 ³⁸	approx. 10 ⁻³⁰⁸ to 10 ³⁰⁸
Smallest denormalized number	approx. 10 ⁻⁴⁵	approx. 10 ⁻³²⁴

Characteristics of IEEE floating-point numbers.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

IEEE Floating-point Standard 754 (5)

IEEE numerical types.