The Instruction Set
Architecture Level

Chapter 5

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

|ISA Level

FORTRAN 90 C program
program
FORTRAN 90 C program
program compiled compiled
[to ISA program “to ISA program
Software
ISAlevel |mmmmmmmmmmmmmmm e

Hardware

ISA program executed
by microprogram or hardware

Y

Hardware

The ISA level is the interface between the compilers and the hardware.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Memory Models

Address Address
-~ 8 Bytes ——— ~—8Bytes ———
24 24
16 1918117116 | 16
15i14:13:12:11:10: 9 i 8 8 15:14:i13: 12 8
\0 N 0
Y
Aligned 8-byte Nonaligned 8-byte
word at address 8 word at address 12
(a) (b)

An 8-byte word in a little-endian memory. (a) Aligned. (b) Not
aligned. Some machines require that words in memory be aligned.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Bits 16 -t 8 - 8 -

Overview of i AX A] eax
BH | BL EBX

the Pentium 4 0 X eox
ISA Level O °,™ B enx

ESI

EDI

EBP
ESP

CSs

SS
The Pentium 4’s primary DS

registers. ES
FS

GS

| | EIP

| | eFLaGs

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Overview of the UltraSPARC Il ISA Level (1)

Register | Alt. name Function
RO GO Hardwired to 0. Stores into it are just ignored.
R1-R7 G1-G7 | Holds global variables
R8 - R13 00 - O5 | Holds parameters to the procedure being called
R14 SP Stack pointer
R15 o7 Scratch register
R16-R23 | LO-L7 Holds local variables for the current procedure
R24 — R29 10—15 Holds incoming parameters
R30 FP Pointer to the base of the current stack frame
R31 |7 Holds return address for the current procedure

The UltraSPARC IlI's general registers.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Overview of the
UltraSPARC Il
ISA Level (2)

Operation of the
UltraSPARC IlI
register windows.

RO
R1

R7

R&

R13
R14
R15

R16

R23
R24
R29
R30
R31

GO 0
G1 Global 1
G7 Global 7
b
\
III|
\
y Alternative name
|
'
[o1] Qutgoing parameter 0
0s Outgoing parameter 5
SP Stack pointer
o7 Temporary
Lo Local 0
L7 Local 7
10 Incoming parameter O
15 Incoming parameter 5
FP Frame pointer
17 Return address

(a)

RO| GO 0
R1| G1 Global 1
R7| G7 Global 7
R8| OO0
R13| 05
R14| SP Stack pointer
R15| O7 Temporary
R16| LO Local 0
CWP=7
___________ R23| L7 Local 7
R24| 10 Incoming parameter 0
Overlap R29| 15 Incoming parameter 5
R30| FP Frame pointer
R31| 17 Return address
i
Part of
CWP previous window
decremented
on call in

this direction

Part of

previous window

(b)

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

CWP =6

Program
memory

Scratchpad

Bit addressable memory

8 Bits
(@)

4095

127

48
32

Overview of the
8051 ISA Level

[c|AI] RS [0 [P |Psw

|EAIRXIE2 [ES[E1 [X1[E0 [X0| IE

IR E2 [ES|E1 [X1]E0[X0]1P

[o1]r1Joo[Ro] E1] T1]E0][TO | TCON

I Timer 1

I Timer 0

8 Bits
(b)

| TMoD

(a) On-chip memory organization for the 8051.
(b) Major 8051 registers.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Data Types on the Pentium 4

Type 1 Bit | 8 Bits | 16 Bits | 32 Bits | 64 Bits | 128 Bits
Bit
Signed integer X X X
Unsigned integer X X X
Binary coded decimal integer X
Floating point X X

The Pentium 4 numeric data types.
Supported types are marked with x.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Data Types on the UltraSPARC llI

Type

1 Bit

8 Bits

16 Bits

32 Bits

64 Bits

128 Bits

Bit

Signed integer

Unsigned integer

Binary coded decimal integer

Floating point

The UltraSPARC Ill numeric data types.
Supported types are marked with x.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Data Types on the 8051

Type

1 Bit

8 Bits

16 Bits

32 Bits

64 Bits

128 Bits

Bit

Signed integer

Unsigned integer

Binary coded decimal integer

Floating point

The 8051 numeric data types.
Supported types are marked with x.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Instruction Formats (1)

OPCODE OPCODE ADDRESS
(@) (b)
OPCODE |ADDRESS1|ADDRESS2 OPCODE | ADDR1 | ADDR2 | ADDR3
(©) (d)

Four common instruction formats:
(a) Zero-address instruction. (b) One-address instruction
(c) Two-address instruction. (d) Three-address instruction.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Instruction Formats (2)

-1 Word - ~ 1 Word —— -1 Word ——
Instruction Instruction Instruction Instruction
Instruction Instruction Instruction Instruction | Instr. | Instr.
Instruction Instruction Instruction .

- - - Instruction
Instruction Instruction Instruction
(a) (b) (c)

Some possible relationships between instruction and word length.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Expanding Opcodes (1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Opgode Addrgss 1 Addr:ass 2 Addrzass 3

An instruction with a 4-bit opcode and three 4-bit address fields.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Expanding Opcodes (2)

12-bit —+(A111_1110_0000) zzzz _
opcode 1111 1110 0001 zzzz | L 1-address
16 bits 1111 1110 1110 zzzz
4-bit 00 1111 1110 1111 zzzz
-bit ——— XXXX YYYY 22ZZ | 15 3.address 1111 1111 0000 zzzz
opcode 0001 xxxx yyyy zzzz | . : 1111 1111 0001 zzzz
0010 xxxx yyyy zzzz | Instructions
1100 xxxx yyyy zzzz
1101 Xxxx yyyy zzzz 1111 1111 1101 zzzz
1110 Xxxx yyyy zzzz 1111 1111 1110 zzzz
8-bit ———+@T11_0000) yyyy 2227 | 14 o-address 16-bit ——+TT11 1111 1111 0000)| 46 o.address
opcode 1111 0001 yyyy zzzz instructions opcode 1111 1111 1111 0001 | . truchi
1111 0010 yyyy zzzz 1111 1111 1111 0010 | nstructions
1111 1011 yyyy zzzz 1111 1111 1111 1101
1111 1100 yyyy zzzz 1111 1111 1111 1110
1111 1101 yyyy zzzz 1111 1111 1111 1111
151211 8 7 4 3 0 151211 8 7 4 3 0
Bit number Bit number

An expanding opcode allowing 15 three-address instructions, 14
two-address instructions, 31 one-address instructions, and 16
zero-address instructions. The fields marked xxxx, yyyy,
and zzzz are 4-bit address fields.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The Pentium 4 Instruction Formats

Bytes 0-5 1-2 0-1 0-1 0-4 0-4
[PREFIX | OPCODE | MODE | SIB | DISPLACEMENT [IMMEDIATE |
L \
Bits 6 11 Bits 2 3 3
[INSTRUCTION | | | [SCALE| INDEX | BASE |

Which operand is source? W

Byte/word

Bits 2 3 3
[Mob| REG | RM |

The Pentium 4 instruction formats.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The UltraSPARC lll Instruction Formats

Format _ 2 5 6 5 1 8 5
1a DEST | OPCODE | SRC1 |0 FP-OP SRC2 | 3 Register
1b DEST OPCODE SRCH1 1 IMMEDIATE CONSTANT Immediate

2 5 3 22

2 DEST | OP IMMEDIATE CONSTANT SETHI
2 1 4 3 22

3 A| COND | OP PC-RELATIVE DISPLACEMENT BRANCH
2 30

4 PC-RELATIVE DISPLACEMENT CALL

The original SPARC instruction formats.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The 8051 Instruction Formats

Format
1 Opcode
2 Opcode Reg
3 Opcode Operand
4 Opcode 11-Bit address
5 Opcode 16-Bit address
6 Opcode Operand 1 Operand 2

The 8051 instruction formats.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Addressing

MOV

| Rt | 4 |

An immediate instruction for loading 4 into register 1.

MOV R1,#0
MOV R2,#A

MOV R3,#A+4096

LOOP: ADD R1,(R2)
ADD R2,#4
CMP R2,R3
BLT LOOP

Register Indirect Addressing: a generic assembly program for

; accumulate the sum in R1, initially 0
; R2 = address of the array A

; R3 = address of the first word beyond A

; register indirect through R2 to get operand
; iIncrement R2 by one word (4 bytes)
; are we done yet?

if R2 < R3, we are not done, so continue

computing the sum of the elements of an array.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Indexed Addressing (1)

MOV R1.,#0 ; accumulate the OR in R1, initially O
MOV R2,#0 : R2 = index, i, of current product: A[i] AND BJi]
MOV R3,#4096 : B3 = first index value not to use
LOOP: MOV R4,A(R2) : R4 = Al
AND R4,B(R2) : R4 = A[i] AND BJi]
OR R1,R4 : OR all the Boolean products into R1
ADD R2,#4 ;i =1+ 4 (step in units of 1 word = 4 bytes)
CMP R2,R3 ; are we done yet?
BLT LOOP if R2 < R3, we are not done, so continue

A generic assembly program for computing the OR of
Ai AND Bi for two 1024-element arrays.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Indexed Addressing (2)

MOV R4 R2 124300

A possible representation of MOV R4,A(R2).

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Reverse Polish Notation (1)

California

Texas

L]

[<I+]

A

X (B + C) L

O O O O o O O O O O

‘.‘<OO

Switch

New York

Each railroad car represents one
symbol in the formula to be
converted from infix to reverse
Polish notation.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Reverse Polish Notation (2)

Most recently arrived car
on the Texas line

Car at the switch

1L+ = x / ()
al1]11]1]1]5
olal2|1]1]1]2
2l221]1]|1]2
2l2]2|2]2]|1]2
2l2]2|2]2]1]2
51 (1|1]1]1]3

Decision table used by the infix-to-reverse Polish notation

algorithm

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Reverse Polish Notation (3)

Infix Reverse Polish notation
A+BxC ABCx+
AxB+C ABxC +
AxB+CxD ABxCDx+
(A+B)/(C-D) AB+CD-/
AxB/C ABxC/
(A+B)xC+DJY(E +F + Q) AB+CxD+EF+G+/

Some examples of infix expressions and
their reverse Polish notation equivalents.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Evaluation of Reverse Polish notation Formulas

Step Remaining string Instruction Stack
1 825x+132x+4-/ BIPUSH 8 8
2 25x+132x+4-/ BIPUSH 2 8, 2
3 5x+132x+4-/ BIPUSH 5 8,2,5
4 X+132x+4-/ IMUL 8,10
5 +132x+4-/ IADD 18
6 132x+4-/ BIPUSH 1 18, 1
7 32x+4-/ BIPUSH 3 18,1, 3
8 2x+4 -/ BIPUSH 2 18,1, 3,2
9 X+ 4 -/ IMUL 18,1, 6
10 +4-/ IADD 18,7
11 4/ BIPUSH 4 18,7, 4
12 -/ ISUB 18,3
13 / DIV 6

Use of a stack to evaluate a reverse Polish notation formula.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Orthogonality of Opcodes and
Addressing Modes (1)

Bits 8 1 5 5 5 8
1| OPCODE l[of DEST | sret | sme2 |
2 | OPCODE [1] DEST | smci | OFFSET |
3| OPCODE | OFFSET |

A simple design for the instruction formats of a three-address
machine.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Orthogonality of Opcodes and
Addressing Modes (2)

Bits 8 3 5 4 3 5 4

(Optional 32-bit direct address or offset) I
i (Optional 32-bit direct address or offset)

__ -

A simple design for the instruction formats
of a two-address machine.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The Pentium 4 Addressing Modes (1)

MOD

R/M 00 01 10 11

000 | M[EAX] | M[EAX + OFFSET8] | M[EAX + OFFSET32] | EAX or AL
001 | M[ECX] | M[ECX + OFFSET8] | M[ECX + OFFSET32] | ECX or CL
010 | M[EDX] | M[EDX + OFFSET8] | M[EDX + OFFSET32] | EDX or DL
011 | M[EBX] | M[EBX + OFFSET8] | M[EBX + OFFSET32] | EBX or BL
100 | SIB SIB with OFFSET8 | SIB with OFFSET32 | ESP or AH
101 | Direct | M[EBP + OFFSET8] | M[EBP + OFFSET32] | EBP or CH
110 | M[ESI] | M[ESI + OFFSET8] | M[ESI + OFFSET32] | ESlor DH
111 | M[EDI] | M[EDI + OFFSET8] | M[EDI + OFFSET32] | EDI or BH

is the memory word at x.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The Pentium 4 32-bit addressing modes. M[X]

The Pentium 4 Addressing Modes (2)

Access to ali].

—-— EBP
local
variables
SIB Mode references
Stack { a [0] —-— EBP +8 M[4 * EAX + EBP + 8]
frame
a[l] —-— EBP + 12
al2] —— EBP + 16

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Discussion of Addressing Modes

Addressing mode | Pentium 4 | UltraSPARC Il 8051

Accumulator

Immediate

Direct

Register

K| x| XX

Register indirect

O S I O I

Indexed

Kol H | KX

Based-indexed

Stack

A comparison of addressing modes.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Loop Control

i=1; i=1;
L1: if (i > n) goto L2;
L1: first-statement; first-statement;
iast-statement; iast-statement
=1+ 1; =1+ 1;
if (i < n) goto L1; goto L1;
L2:
(a) (b)

(a) Test-at-the-end loop.
(b) Test-at-the-beginning loop.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Input/Output (1)

Character available Ready for next character
Keyboard status Display status
\ AN
Interrupt enabled Interrupt enabled
Keyboard buffer Display buffer
Character received Character to display

Device registers for a simple terminal.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Input/Output (2)

// Output a block of data to the device
int status, i, ready;

for (i=0; i< count; i++) {

do {
status = in(display_status_reg); /] get status
ready = (status >> 7) & 0x01; // isolate ready bit

} while (ready != 1);
out(display_buffer_reg, buf]i]);

}
}

An example of programmed I/O.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Terminal

/
Input/Output (3)
I
e
Address / FEEEEEER RS
CPU \ DMA Memory
Count| T 100
™ 32 | : 100 RS232C
4 Controller
N ;
N
Device Direction

Bus

A system with a DMA controller.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The Pentium 4 Instructions (1)

Moves

MOV DST,SRC

Move SRC to DST

PUSH SRC

Push SRC onto the stack

POP DST

Pop a word from the stack to DST

XCHG D$S1,DS2

Exchange DS1 and DS2

LEA DST,SRC

Load effective addr of SRC into DST

CMOVee DST,SRC

Conditional move

Arithmetic

ADD DST,SRC

Add SRC to DST

SUB DST,SRC

Subtract SRC from DST

MUL SRC

Multiply EAX by SRC (unsigned)

IMUL SRC

Multiply EAX by SRC (signed)

DIV SRC

Divide EDX:EAX by SRC (unsigned)

IDIV SRC

Divide EDX:EAX by SRC (signed)

ADC DST,SRC

Add SRC to DST, then add carry bit

SBB DST,SRC

Subtract SRC & carry from DST

INC DST

Add 1 to DST

DEC DST

Subtract 1 from DST

NEG DST

Negate DST (subtract it from 0)

A selection of the Pentium 4 integer instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The Pentium 4 Instructions (2)

Binary coded decimal

DAA Decimal adjust
DAS Decimal adjust for subtraction
AAA ASCII adjust for addition
AAS ASCII adjust for subtraction
AAM ASCII adjust for multiplication
AAD ASCII adjust for division
Boolean

AND DST,SRC Boolean AND SRC into DST
OR DST,SRC Boolean OR SRC into DST
XOR DST,SRC Boolean Exclusive OR SRC to DST
NOT DST Replace DST with 1's complement

Shift/rotate
SAL/SAR DST . # Shift DST left/right # bits
SHL/SHR DST # Logical shift DST left/right # bits
ROL/ROR DST,# Rotate DST left/right # bits
RCL/RCR DST.# Rotate DST through carry # bits

A selection of the Pentium 4 integer instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The Pentium 4 Instructions (3)

Test/compare

TEST SRC1,SRC2 | Boolean AND operands, set flags

CMP SRC1,SRC2 Set flags based on SRC1 - SRC2
Transfer of control

JMP ADDR Jump to ADDR

Jxx ADDR Conditional jumps based on flags

CALL ADDR Call procedure at ADDR

RET Return from procedure

IRET Return from interrupt

LOOPxx Loop until condition met

INT n Initiate a software interrupt

INTO Interrupt if overflow bit is set

Strings

LODS Load string

STOS Store string

MOVS Move string

CMPS Compare two strings

SCAS Scan Strings

A selection of the Pentium 4 integer instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The Pentium 4 Instructions (4)

Condition codes

Miscellaneous

STC Set carry bit in EFLAGS register SWAP DST Change endianness of DST

CLC Clear carry bit in EFLAGS register cwa Extend EAX to EDX:EAX for division
CMC Complement carry bit in EFLAGS CWDE Extend 16-bit number in AX to EAX
STD Sel direction bit in EFLAGS regisler ENTER SIZE,LV Create stack frame with SIZE bytes
CLD Clear direction bit in EFLAGS reg LEAVE Undo stack frame built by ENTER
STI Set interrupt bit in EFLAGS register NOP No operation

cLi Clear interrupt bit in EFLAGS reg HLT Halt

PUSHFD Push EFLAGS register onto stack IN AL,PORT Input a byte from PORT to AL
POPFD Pop EFLAGS register from stack OUT PORT,AL Output a byte from AL to PORT
LAHF Load AH from EFLAGS register WAIT Wait for an interrupt

SAHF Store AH in EFLAGS register SRC = source # = shift/rotate count

DST = destination LV = # locals

A selection of the Pentium 4 integer instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The UltraSPARC Il Instructions (1)

Loads
Load signed byte (8 bits)
Load unsigned byte (8 bits)

LDSB ADDR,DST
LDUB ADDR,DST

LDSH ADDR,DST

Load signed halfword (16 bits)

LDUH ADDR,DST

Load unsigned halfword (16)

LDSW ADDR,DST

Load sighed word (32 bits)

LDUW ADDR,DST

Load unsigned word (32 bits)

LDX ADDR,DST

Load extended (64-bits)

Stores

STB SRC,ADDR

Store byte (8 bits)

STH SRC,ADDR

Store halfword (16 bits)

STW SRC,ADDR

Store word (32 bits)

STX SRC,ADDR

Store extended (64 bits)

The primary UltraSPARC lll integer instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The UltraSPARC Il Instructions (2)

Arithmetic

ADD R1,52,DST

Add

ADDCC

Add and set icc

ADDC !

Add with carry

ADDCCC *

Add with carry and set icc

SUB R1,52,DST

Subtract

SuBCC

Subtract and set icc

SUBC

Subtract with carry

SuBCCC

Subtract with carry and set icc

MULX R1,82,DST

Multiply

SDIVX R1,82,DST

Signed divide

UDIVX R1,S2,DST

Unsigned divide

TADCC R1,S2,DST,

Tagged add

The primary UltraSPARC lll integer instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The UltraSPARC Il Instructions (3)

Shifts/rotates

SLL R1,52,DST

Shift left logical (32 bits)

SLLX R1,52,DST

Shift left logical extended (64)

SRL R1,52,DST

Shift right logical (32 bits)

SRLX R1,52,DST

Shift right logical extended (64)

SRA R1,52,DST

Shift right arithmetic (32 bits)

SRAX R1,52,DST

Shift right arithmetic ext. (64)

M

iscellaneous

SETHI CON,DST

Set bits 10 to 31

MOVcc CC,52,DST

Move on condition

MOVr R1,S2,DST

Move on register

NOP No operation

POPC S1,DST Population count

RDCCR V,DST Read condition code register
WRCCR R1,S2,V | Write condition code register
RDPC V,DST Read program counter

The primary UltraSPARC lll integer instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The UltraSPARC Il Instructions (4)

Boolean
AND R1,52,DST Boolean AND
ANDCC “ Boolean AND and set icc
ANDN Boolean NAND
ANDNCC *~ Boolean NAND and set icc
OR R1,52,DST Boolean OR
ORCC “ Boolean OR and set icc
ORN “ Boolean NOR
ORNCC Boolean NOR and set icc
XOR R1,52,DST | Boolean XOR
XORCC Boolean XOR and set icc
XNOR “ Boolean EXCLUSIVE NOR
XNORCC Boolean EXCL. NOR and set icc

The primary UltraSPARC lll integer instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The UltraSPARC Il Instructions (5)

Transfer of control

SRC = source register

BPcc ADDR Branch with prediction
BPr SRC,ADDR Branch on register
CALL ADDR Call procedure

RETURN ADDR

Return from procedure

JMPL ADDR,DST

Jump and link

SAVE R1,82,DST

Advance register windows

RESTORE

Restore register windows

Tcc CC, TRAP#

Trap on condition

PREFETCH FCN

Prefetch data from memory

LDSTUB ADDR,R

Atomic load/store

MEMBAR MASK

Memory barrier

DST = destination register

R1 = source register

S2 = source: register or immediate
ADDR = memory address

TRAP# = trap number
FCN = function code
MASK = operation type
CON = constant

V = register designator

CC = condition code set
R =destination register
cc = condition
r=LZ,LEZZNZGZ,GEZ

The primary UltraSPARC lll integer instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The UltraSPARC Il Instructions (6)

Instruction How to do it
MOV SRC,DST OR SRC with G0 and store the result DST
CMP SRC1,SRC2 SUBCC SRC2 from SRC1 and store the result in GO
TST SRC ORCC SRC with GO and store the result in GO
NOT DST XNOR DST with GO
NEG DST SUB DST from GO and store in DST
INC DST ADD 1 to DST (immediate operand)
DEC DST SUB 1 from DST (immediate operand)
CLR DST OR GO with GO and store in DST
NOP SETHIGOto 0
RET JMPL 9%I7+8,%G0

Some simulated UltraSPARC Il instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

8051 Instructions (1)

Inst. Description ACC | Reg | Dir | @R | # C Bit
MOV Move src to ACC X x X X
MOV Move src to register X X
MOV Move src to memory X X b X X
MOV Move src to indirect RAM X X X

MOV Move 16-bit constant to DPTR

MOVC | Move code to ACC offset from DPTR

MOVC | Move code to ACC offset from PC

MOVX | Move external BAM byte to ACC X
MOVX | Move ext. BAM byte to ACC @DPTR
MOVX | Move to ext. RAM byte from ACC X

MOVX | Move to ext. RAM byte from ACC @DPTH

PUSH | Push src byte to stack X

POP Pop stack byte to dst X

XCH Exchange ACC and dst X X X
XCHD | Exchange low-order digit ACC and dst X

SWAP | Swap nibbles of dst X

ADD Add sreto ACC X b X X

The 8051 Instruction set.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

8051 Instructions (2)

Inst. Description ACC | Reg | Dir | @R Bit
ADDC | Add srcto ACC with carry X X X
SUBB Subtract src from ACC with borrow X X X
INC Increment dst X X X
DEC Decrement dst X X X
INC DPTR
MUL Multiply
DIv Divide
DA Decimal adjust dst X
ANL AND src to ACC X X X
ANL AND ACC to dst X
ANL AND immediate to dst X
ORL OR srcto ACC X b X
ORL OR ACC to dst X
ORL OR immediate to dst X
The 8051 Instruction set.
Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0
8051 Instructions (3)
Inst. Description ACC | Reg | Dir | @R Bit
XRL XOR srcto ACC X X X
XRL XOR ACC to dst
XRL XOR immediate to dst X
CLR Clear dst X
CPL Complement dst X
RL Rotate dst left X
RLC Rotate dst left through carry X
RR Rotate dst right X
RRC Rotate dst right through carry %

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The 8051 Instruction set.

8051 Instructions (4)

Inst. Description ACC | Reg | Dir | @R | # C | Bit
CLR Clear bit X X
SETB Set bit P
CPL Complement bit X bs
ANL AND srcto carry bs
ANL AND complement of src to carry X
ORL OR srcto carry X
ORL OR complement of src to carry X
MOV Move src to carry bs
MOV Move carry to src bs
JV Jump relative if carry set
JNC Jump relative if carry not set
JB Jump relative if direct bit set X
JNB Jump relative if direct bit not set bs
JBC Jump rel. if direct bit set and carry cleay b

The 8051 Instruction set.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

8051 Instructions (5)

Inst. Description ACC | Reg | Dir | @R | # C | Bit
ACALL | Call subroutine (11-bit addr)
LCALL | Call subroutine (16-bit addr)
RET Return from subroutine
RETI Return from interrupt
SJMP Short relative jump (8-bit addr)
AJMP Absolute jump (11-bit addr)
LJMP Absolute jump (16-bit addr)
JMP Jump indirect rel. to DPR+ACC
JZ Jump if ACC is zero
JNZ Jump if ACC is nonzero
CJNE Comp. srcto ACC, jump unequal X X
CJNE Comp. src to immediate, jump unequal X X
DJNZ Decrement dst and jump nonzero
NOP No operation

The 8051 Instruction set.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Sequential Flow of Control and Branches

Jumps

Program counter
Program counter

Time Time

(a) (b)

Program counter as a function of time (smoothed).
(a) Without branches. (b) With branches.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Recursive Procedures (1)

S
"

L-J'

"= U L

Initial configuration for the Towers of Hanoi problem for five disks.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Recursive Procedures (2)

Initial state <

First move 2 disks
from peg 1 to peg 2

e

The steps required to solve the Towers of Hanoi for three disks.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Recursive Procedures (3)

Then move 1 disk

from peg 1 to peg 3 _:l‘- i -l::

Finally move 2 disks
from peg 2 to peg 3

The steps required to solve the Towers of Hanoi for three disks.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Recursive Procedures (4)

public void towers(int n, int i, int j) {

int k;
if (n==1)

System.out.printin("Move a disk from " + i+ "to " +]);
else {

k=6-1i-];

towers(n — 1, 1, k);
towers(1, i,);
towers(n - 1, k, J);

A procedure for solving the Towers of Hanoi.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Recursive Procedures (5)

Address

SP —= k SP —= k 1068

——Old FP = 1024 ——Old FP = 1024 | 1064

Return addr Return addr |1060

j=3 j=2 1056

i=1 i=1 1052

FP —~ n=1 FP —~ n=1 1048

SP — k k=3 k k=3 1044

— Old FP = 1000 | /| Old FP = 1000 | — Old FP = 1000 | |1 Old FP = 1000 | 1040

Return addr Return addr Return addr Return addr |1036

j=2 j=2 j=2 j=2 1032

i=1 i=1 i=1 i=1 1028

FP 1> n=2 ca n=2 n=2 Lo n=2 1024

SP — k k=2 k=2 k=2 k=2 1020
Old FP Old FP Old FP Old FP Old FP 1016

Return addr Return addr Return addr Return addr Return addr | 1012

j=3 j=3 j=3 j=3 j=3 1008

i=1 i=1 i=1 i=1 i=1 1004

FP — n=3 - n=3 — n=3 - n=3 — n=3 1000

(@) (b) () (d) (€

The stack at several points during the execution of Fig. 5-42.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

(a)

Calling
procedure

i

A called ——
from main
program

A returns ——
to main
program

(b)
Called

Coroutines (1)

procedure

/

When a procedure is called,
execution of the procedure
always begins at the first
statement of the procedure.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

from main
program

A called —-—j
1

Areturng ———1——

to main
program

(a)

Coroutines (2)

(b)

B

_EE_S_Q__..-N‘EBv-*
%

wﬂ
R
\%

B
i
| RESUMES, —
:

When a coroutine is resumed, execution begins at the
statement where it left off the previous time, not at the beginning.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Interrupts

Disk interrupt
priority 4 held pending

RS232 ISR finishes
disk interrupt occurs

RS232 interrupt
priority 5 Disk ISR finishes
Printer interrupt Printer ISR finishes
priority 2
| |
0 10 15 20 25 35 40
[| | | | | |
Y i K : b : L :' i i Y Time —=
User :Printer: RS232 ! Disk :Printer: User
program ISR ! ISR : ISR ! ISR i program
i i | | i
1]]] 1
[User] [User User [User| Stack
Printer Printer l

Time sequence of multiple interrupt example.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Towers of Hanoi in Pentium 4 Assembly Language (1)

.586 ; compile for Pentium (as opposed to 8088 elc.)
.MODEL FLAT
PUBLIC _towers ; export 'towers'
EXTERN _printi:NEAR ; import printf
.CODE
_towers: PUSH EBP ; save EBP (frame pointer) and decrement ESP
MOV EBP, ESP ; set new frame pointer above ESP
CMP [EBP+8], 1 ;if(n==1)
JNE L1 : branch if n is not 1
MOV EAX, [EBP+16] ;printf(" .. 0L);
PUSH EAX ; hote that parameters i, j and the format
MOV EAX, [EBP+12] ; string are pushed onto the stack
PUSH EAX ;in reverse order. This is the C calling convention
PUSH OFFSET FLAT:format ; offset flat means the address of format
CALL _printf ; call printf
ADD ESP, 12 ; remove params from the stack
JMP Done ; we are finished

Towers of Hanoi for Pentium 4.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Towers of Hanoi in Pentium 4 Assembly Language (2)

L1: MOV EAX, 6 ;startk=6—i—j

SUB EAX, [EBP+12] TEAX =6 —i

SUB EAX, [EBP+16] TEAX =6-i-]

MOV [EBP+20], EAX ;k=EAX

PUSH EAX ; start towers(n — 1, i, K)
MOV EAX, [EBP+12] ;EAX =i

PUSH EAX ;push i

MOV EAX, [EBP+8] ;EAX =n

DEC EAX ;EAX=n-1

PUSH EAX ;pushn -1

CALL _towers ;call towers(in — 1,1, 6 —i—)
ADD ESP, 12 ; remove params from the stack
MOV EAX, [EBP+16] ; start towers(1, 1, j)

PUSH EAX ; push j

MOV EAX, [EBP+12] ;EAX =i

PUSH EAX ;push i

PUSH 1 ;i push 1

CALL _towers ; call towers(1, 1, J)

Towers of Hanoi for Pentium 4.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Towers of Hanoi in Pentium 4 Assembly Language (3)

ADD ESP, 12 ; remove params from the stack
MOV EAX, [EBP+12] ; start towers(n — 1,6 —1—], i)
PUSH EAX ;pushi
MOV EAX, [EBP+20] ;EAX =Kk
PUSH EAX i push k
MOV EAX, [EBP+8] ;EAX =n
DEC EAX ; EAX =n-1
PUSH EAX ;pushn-—1
CALL _towers ;call towers(n — 1,6 —-1—,1)
ADD ESP, 12 ; adjust stack pointer
Done: LEAVE ; prepare to exit
RET O ; return to the caller
DATA
format DB "Move disk from %d to %d\n" ; format string
END

Towers of Hanoi for Pentium 4.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Towers of Hanoi in UltraSPARC III

#define N %i0
#define | %i1

#define J %i2
#define K %I0
#define Param0 %00
#define Param1 %o1
#define Param2 %02
#define Scratch %I

Assembly Language (1)

/N is input parameter 0 */

/ 1is input parameter 1 */

/* Jis input parameter 2 */

/* Kis local variable 0 */

/* Param0 is output parameter 0 */

/* Param1 is output parameter 1 */

/¥ Paramz is output parameter 2 */

/* as an aside, cpp uses the C comment convention */

towers: save %sp, —112, %sp

.proc 04
.global towers

cmp N, 1
bne Else

sethi %hi(format), ParamO
or ParamO, %lo(format), ParamO

mov |, Param1
call printf

mov J, Param2
b Done

nop

lif (n==1)
Lif (n !=1) goto Else

! printf("Maove a disk from %d to %d\n", 1, j)

! Param0 = address of format string

! Param1 =i

! call printf BEFORE parameter 2 (j) is set up

! use the delay slot after call to set up parameter 2
! we are done now

il delay slot

Towers of Hanoi for UltraSPARC III.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Else:

Towers of Hanoi in UltraSPARC III
Assembly Language (2)

mov 6, K
sub K, J,K
sub K, LK

add N, -1, Scratch
mov Scratch, ParamO
mov |, Param1

call towers

mov K, Param2

mov 1, ParamO
mov |, Parami
cait towers
mov J, Param2

!statk=6-i—]j
lk=6—]j
lKk=6-i-]

! start towers(n -1, i, k)

! Scratch=n-1

I parameter 1 =i

! call towers BEFORE parameter 2 (k) is set up

! use the delay slot after call to set up parameter 2

! start towers(1, i, j)
! parameter 1 =

i
) aall Bazacna M=M= o sz abacs £ SV 2a a2l :aa
! caii towers BEFORE parameter £ (j) is set up
! parameter 2 =j

Towers of Hanoi for UltraSPARC III.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Towers of Hanoi in UltraSPARC I
Assembly Language (3)

mov Scratch, ParamO ! start towers(n — 1, k, j)
mov K, Param1 ! parameter 1 =k
call towers ! call towers BEFORE parameter 2 (j) is set up
mov J, Param2 ! parameter 2 =
Done: ret ! return
restore ! use the delay slot after ret to restore windows

format: .asciz "Move a disk from %d to Sed\n”

Towers of Hanoi for UltraSPARC III.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Reducing Memory References

64 1-Bit
predicate
registers
128 General 128 Floating-point 128 Application
registers registers registers _
96
Registers
used as a < = 8 Branch
register E registers

stack /

32 Static
registers

|

The Itanium 2’s registers.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Instruction Scheduling

Bits 41 41 41 5
Instruction 2 Instruction 1 Instruction 0
-~ e
,// \\‘\\
o ~._ Template
i s
,-’ \'N.\
1,(\“'.\
Bits .74 10 7 7 7 6>~

OP.TYPE REGISTER 3 | REGISTER 2 | REGISTER 1

OPERATION GROUP PREDICATE REGISTER

An |A-64 bundle contains three instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Reducing Conditional Branches: Predication (1)

if (R1 ==0) CMP R1,0 CMOVZ R2,R3,R1
R2 = R3; BMNE L1
MOV R2,R3
L1:

(a) (b) (c)

(a) An if statement.
(b) Generic assembly code for a).
(c) A conditional instruction.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Reducing Conditional Branches: Predication (2)

if (R1==0){ CMP R1,0 CMOVZ R2,R3,R1
R2 = R3; BNE L1 CMOVZ R4,R5,R1
R4 = R5; MOV R2,R3 CMOVN R6,R7,R1
lelse { MOV R4.R5 CMOVN R8,R9,R1
R6 = R7; BR L2
R8 = R9; L1: MOV R6,R7
1 MOV R8,R9
L2:

(@) (b) (©)

(a) An if statement.
(b) Generic assembly code for a).
(c) Conditional instruction.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Reducing Conditional Branches: Predication (3)

if (R1 == R2) CMP R1,R2 CMPEQ R1,R2,P4
R3 = R4 + R5; BNE L1 <P4> ADD R3,R4,R5
else MOV R3,R4 <P5> SUB R6,R4,R5
R6 = R4 — R5 ADD R3,R5
BR L2
L1: MOV Ré6,R4
SUB R6,R5
L2:

(@) (b) (c)

(a) An if statement.
(b) Generic assembly code for a).
(c) Predicated instruction.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

