The Microarchitecture Level

Chapter 4

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Memory
control
b registers
The Data Path (1) &
memaory
The data path of the example Controlsignals
microarchitecture used in this i ::fm'ec obmoabusl
Chapter rite C bus to register
C bus ——= |+——B bus
ALU control N

Shifter control

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The Data Path (2)

F, | F, | ENA | ENB | INVA | INC | Function
0 | 1 1 0 0 0o | A

0 | 1 0 1 0 0 | B

0| 1 1 0 1 0o | A

1]0 1 1 0 0 | B

1|1 1 1 0 0 | A+B
1|1 1 1 0 1 | A+B+1
1|1 1 0 0 1 | A+1
1|1 0 1 0 1 | B+1
1|1 1 1 1 1 | B-A
1|1 0 1 1 0 | B-1
1|1 1 0 1 1 | -A
0|0 1 1 0 0 | AANDB
0 | 1 1 1 0 0 | AORB
0 | 1 0 0 0 0o |o

1|1 0 0 0 1 |1

1|1 0 0 1 0o |-

Useful combinations of ALU signals and the function performed.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Data Path Timing

Registers loaded
Shifter instantaneously from
C bus and memory on

Cycle 1 g;'ggg rising edge of clock
starts
here Clock cycle 1 - Clock cycle 2 ——
e L New MPC used to
~—load MIR with next
JAWL JAXL P Ay - EE microinstruction here
Ty Ty
f f MPC
Set up ALU ;
signals and available
to drive shifter here
data path
Drive H Propagation
and from shifter
B bus to registers

Timing diagram of one data path cycle.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Memory Operation

Discarded

Y

32-Bit address bus (counts in bytes)

Mapping of the bitsin MAR to the address bus.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Microinstructions

Bits 9 3 8 9 3 4
JIJlJ|s|s|FoR|E[E| 1| 1|H|O|T|C|L|S|P[M|IM|W|R|E

M|A[A|L|R N{N[N|N POPVPCDAFI*E!IE. B

NEXT_ADDRESS |P[M|M|L]|A AlB|v|c| [c|s|pP RIRIT[AlC] &

cIN|z|8]1 A E[D|A] Pus

Y . L N v & v g v W

Addr JAM ALU C Mem B

B bus registers

0=MDR 5=LV
1=PC 6=CPP
2=MBR 7=TOS

The microinstruction format for the Mic-1. 3=MBRU 8=0PC
4 =8P 9-15 none

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Microinstruction

Memory control signals (rd, wr, fetch)

[l 4
Control: HIE=
- <——] ”“”IMF'
The Mic-1 (1) [SE==l il em——
> MR I IB |1 512 x 36-Bi
_‘—+i+—'= g Ih:ﬁcﬁ%ﬁ?élm
Ly = mPQ
The complete block B S |
_ 705 =

diagram of our example = JANAMZ

microarchitecture, the

Mic-1. ol
L)

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Microinstruction Control: The Mic-1 (2)

Address Addr JAM Data path control bits
0x75 0x92 001 JAMZ bit set
0x92 One of
these
" will follow
0x75
depending
0x192 onZ

A microinstruction with JAMZ set to 1 has two potential successors.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

SP a3 108
a2 104

LV — ai 100
()

Stacks (1)

SP —]

b4

b3

LV —

b1

a3

a2

al

SP —

LV —

b4

b3

b1

a3

a2

al

Use of a stack for storing local variables.
While Aisactive. b) After A callsB.
(c) After BcalsC. d) After Cand B returnand A callsD.

a)

C)

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

SP —

LV —

d5

d4

d3

d1

a3

a2

al

(d)

8P+/f/,4"a§7/ﬁ’
a

az
LV — at

(@)

Stacks (2)

a3,

//agh’%/
a

a2

LV —

al

(b)

SP—~{/ a2 + a3/
a3
az

LV — at
(c)

SP >

a3

a2

LV —

a2 + a3

(d)

Use of an operand stack for doing an arithmetic computation.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The |IJZVM Memory Model

Constant
Pool

~—— CPP

Current SP

Operand
Stack 3

Current
Local
Variable
Frame 3

~— | \/

Local
Variable
Frame 2

Method
Area

Local
Variable
Frame 1

~—PC

The various parts of the [JVM memory.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The lIIVM Instruction Set (1)
Hex Mnemonic Meaning
0x10 BIPUSH byte Push byte onto stack
0x59 | DUP Copy top word on stack and push onto stack
0xA7 | GOTO offset Unconditional branch
0x60 | IADD Pop two words from stack; push their sum
Ox7E | IAND Pop two words from stack; push Boolean AND
0x99 IFEQ offset Pop word from stack and branch if it is zero
0x9B | IFLT offset Pop word from stack and branch if it is less than zero
0x9F | IF_ICMPEQ offset Pop two words from stack; branch if equal
0x84 IINC varnum const Add a constant to a local variable
0x15 ILOAD varmum Push local variable onto stack
0xB6 | INVOKEVIRTUAL disp | Invoke a method
0x80 IOR Pop two words from stack; push Boolean OR
0OxAC | IRETURN Return from method with integer value
0x36 ISTORE vamum Pop word from stack and store in local variable
Ox64 ISUB Pop two words from stack; push their difference
0x13 LDC_W index Push constant from constant pool onto stack
0x00 NOP Do nothing
0x57 POP Delete word on top of stack
0Ox5F | SWAP Swap the two top words on the stack
0xC4 | WIDE Prefix instruction; next instruction has a 16-bit index

The IJVM instruction set. The operands byte, const, and varnum
are 1 byte. The operands disp, index, and offset are 2 bytes.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The IJVM Instruction Set (2)

Pushed
parameters

Caller's
local
variable
frame

(a)

Stack after

INVOKEVIRTUAL

Caller's LV ~—SP
P Caller's PC
Space for
Stack before caller's local
INVOKEVIRTUAL variables
Parameter3 |<—SP Stac; base Parameter 3
after
Parameter 2 INVOKEVIRTUAL Parameter 2
Parameter 1 Parameter 1
OBJREF _______________l ___________ — Link ptr =~ LV
Previous LV Previous LV
Previous PC | Previous PC
Caller's Caller's
local local
variables Stack base variables
Parameter 2 before Parameter 2
Parameter 1 INVOKEVIRTUAL Parameter 1
Link ptr ~— LV — Link ptr

(b)

a) Memory before executing INVOKEVIRTUAL.
b) After executing it.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The IIVM Instruction Set (3)

Caller's
local
variable
frame

a)
b)

<

Stack before

IRETURN
Return value |[=—SP
Previous LV
Previous PC
Caller's
local
variables
Parameter 3 St%d; base
Parameter 2 Siore Stack after
IRETURN
Parameter 1 IRETURN
Link ptr -~ { ________ Return value |=<—SP
Previous LV Previous LV
Previous PC Previous PC
Caller's Caller's
local local
variables Stack base variables
Parameter 2 after Parameter 2
Parameter 1 IRETURN Parameter 1
Linkptr | Y = Link ptr - LV

(a)

(b)

Memory before executing IRETURN.
After executing it.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Compiling Javato |IJVM (1)

i=j+k 1 ILOAD j fli=j+k 0x15 0x02
if (i == 3) 2 ILOAD k 0x15 0x03
k=0; 3 IADD 0x60
else 4 ISTORE i 0x36 0x01
j=j-1: 5 ILOAD i /7if (i == 3) 0x15 0x01
6 BIPUSH 3 0x10 0x03
(a) 7 IF_ICMPEQ L1 0x9F 0x00 0x0D
8 ILOAD j Nj=j-1 0x15 0x02
9 BIPUSH 1 0x10 0x01
10 ISUB 0x64
11 ISTORE j 0x36 0x02
12 GOTO L2 0xA7 0x00 0x07
13 L1: BIPUSHO /lk=0 0x10 0x00
14 ISTORE k 0x36 0x03
15 L2
(h) (c)

a) A Javafragment.
b) The corresponding Java assembly language.
c) ThelJVM program in hexadecimal.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Compiling Javato |IJVM (1)

K 3
(I j Li+k] i i
0 1 2 3 4 5 6 7
1
L] j I o 1
8 9 10 11 12 13 14 15

The stack after each instruction of Fig. 4-14(b).

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Microinstructions and Notation

All permitted operations. Any of the

above operations may be extended

by adding ‘<< 8"’ to them to shift the

result left by 1 byte. For example,
acommon operation is
H=MBR<< 8

DEST = H
DEST = SOURCE
DEST =H

DEST = SOURCE

DEST = H + SOURCE
DEST =H + SOURCE + 1
DEST =H + 1

DEST = SOURCE + 1
DEST = SOURCE - H
DEST = SOURCE - 1
DEST =-H

DEST = H AND SOURCE
DEST = H OR SOURCE

DEST =0
DEST =1
DEST = -1

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

|mplementation of IJVM Using the Mic-1 (1)

Label Operations Comments

Main1 PC = PC + 1; fetch; goto (MBR) MBR holds opcode; get next byte; dispatch
nop1 goto Maint Do nothing

iadd1 MAR=SP=SP-1;rd Read in next-to-top word on stack

jadd2 H=TOS H = top of stack

iadd3 MDR = TOS = MDR + H; wr; goto Main1 Add top two words; write to top of stack

isub1 MAR =SP=5SP - 1; rd Read in next-to-top word on stack

isub2 H=TOS H = top of stack

isub3 MDR = TOS = MDR — H; wr; gote Main1 Do subtraction; write to top of stack

jand1 MAR=SP=5SP-1;rd Read in next-to-top word on stack

jand2 H=TOS H = top of stack

jand3 MDR =TOS = MDR AND H; wr; goto Main1 Do AND; write to new top of stack

ior1 MAR=SP=5SP-1;rd Read in next-to-top word on stack

ior2 H=TOS H =top of stack

ior3 MDR = TOS = MDR OR H; wr; goto Main1 Do OR; write to new top of stack

dup1 MAR =35SP =SP +1 Increment SP and copy to MAR

dup2 MDR = TOS; wr; goto Main1 Write new stack word

pop1 MAR =5P=5P -1;rd Read in next-to-top word on stack

pop2 Wait for new TOS to be read from memory
pop3 TOS = MDR; goto Maint Copy new word to TOS

swap1 MAR = SP - 1; rd Set MAR to SP - 1; read 2nd word from stack
swap2 MAR = SP Set MAR to top word

swap3 H=MDR; wr Save TOS in H; wrile 2nd word 1o lop of slack
swap4 MDR =TOS Copy old TOS to MDR

swap5 MAR =5SP —1; wr Set MAR to SP — 1; write as 2nd word on stack
swap6é TOS = H; goto Maint Update TOS

The microprogram for the Mic-1

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

|mplementation of IJVM Using the Mic-1 (2)

bipush1
hipush2
bipush3

SP=MAR=SP +1
PC = PC + 1; fetch
MDR = TOS = MBR; wr; goto Main1

MBR = the byte to push cnto stack
Increment PC, fetch next opcode
Sign-extend constant and push on stack

iload1
iload2
iload3
iload4
iloads

H=LV

MAR = MBRU + H; rd
MAR = SP = SP +1

PC = PC + 1; fetch; wr
TOS = MDR; goto Main1

MBR contains index; copy LV to H

MAR = address of local variable to push
SP points to new top of stack; prepare write
Inc PC; get next opcode; write top of stack
Update TOS

istore1
istore2
istore3
istore4
istoreb
istore6

H=LV

MAR = MBRU + H

MDR = TOS; wr
SP=MAR=S5P-1;rd
PC =PC + 1; fetch

TOS = MDR; goto Main1

MBR contains index; Copy LV to H

MAR = address of local variable to store into
Copy TOS to MDR; write word

Read in next-to-top word on stack
Increment PC; fetch next opcode

Update TOS

wide1
wide2

PC = PC + 1; fetch;
goto (MBR OR 0x100)

Fetch operand byte or next opcode
Multiway branch with high bit set

wide_iload1
wide_iload2
wide_jload3
wide_iload4

PC = PC + 1; fetch

H=MBRU << 8
H=MBRUORH

MAR = LV + H; rd; goto iload3

MBR contains 1st index byte; fetch 2nd
H = 1st index byte shifted left & bits

H = 16-bit index of local variable

MAR = address of local variable to push

wide_istore1
wide_istore2
wide_istore3
wide_istored

PC = PC + 1; fetch
H=MBRU << 8

H=MBRU OR H

MAR =LV + H; goto istore3

MBR contains 1st index byte; fetch 2nd

H = 1st index byte shifted left 8 bits

H = 16-bit index of local variable

MAR = address of local variable to store into

Idc_w1
Idc_w2
ldc_w3
lde_w4

PC = PC + 1; fetch

H=MBRU << 8

H=MBRU ORH

MAR = H + CPP; rd; goto iload3

MBR contains 1st index byte; fetch 2nd
H = 1st index byte << 8

H = 16-hit index into constant pool
MAR = address of constant in pool

The microprogram for the Mic-1

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

|mplementation of IJVM Using the Mic-1 (3)

Label Operations Comments

iinct H=LV MBR contains index; Copy LV to H
iinc2 MAR = MBRU + H:; rd Copy LV + index to MAR; Read variable
iinc3 PC = PC + 1; fetch Fetch constant

iinc4 H = MDR Copy variable to H

iincs PC = PC + 1; fetch Fetch next opcode

iincé MDR = MBR + H; wr; goto Main1 Put sum in MDR; update variable
goto1 OPC=PC-1 Save address of opcode.

goto2 PC = PC + 1; fetch MBR = 1st byte of offset; fetch 2nd byte
goto3 H=MBR <<8 Shift and save signed first byte in H
gotod H=MBRU OR H H = 16-hit branch offset

gotos PC = OPC + H; fetch Add offset to OPC

goto6 goto Main1 Wait for fetch of next opcode

iflt1 MAB=SP=SP-1;rd Read in nexi-to-top word on stack
iflt2 OPC =TOS Save TOS in OPC temporarily

iflt3 TOS = MDR Put new top of stack in TOS

iflt4 N = OPC; if (N) goto T; else goto F Branch on N bit

ifeq1 MAR=SP=SP-1;rd Read in next-to-top word of stack
ifeq2 OPC=TOS Save TOS in OPC temporarily
ifeq3 TOS = MDR Put new top of stack in TOS

ifeq4 Z=0PC;if (Z) goto T; else goto F Branch on Z hit

The microprogram for the Mic-1

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Implementation of I3VM Using the Mic-1 (4)

if_icmpeq1 MAR =8P =SP -1;rd Read in next-to-top word of stack
if_icmpeq2 MAR = 8P = SP -1 Set MAR to read in new top-of-stack
it_icmpeq3 H=MDR; rd Copy second stack word to H

it_icmpeq4 OPC=TOS Save TOS in OPC temporarily

if_icmpeq5 TOS = MDR Put new top of stack in TOS

if_icmpeq6 Z=0PC-H;it (Z) goto T, else goto F I top 2 words are equal, goto T, else goto F
T OPC = PC — 1; goto goto2 Same as goto1; needed for target address
F PC=PC +1 Skip first offset byte

Fz2 PC = PC + 1; fetch PC now points to next opcode

F3 goto Main1 Wait for fetch of opcode

invokevirtuald PC = PC + 1; fetch MBR = index byte 1; inc. PC, get 2nd byte
invokevirtual2 H=MBRU << 8 Shift and save first byte in H
invokevirtual3 H=MBRU ORH H = offset of method pointer from CPP
invokevirtual4 MAR = CPP + H; rd Get pointer to method from CPP area
invokevirtuals OPC =PC +1 Save Return PC in OPC temporarily
invokevirtualé PC = MDR,; fetch PC points to new method; get param count
invokevirtual? PC =PC + 1, fetch Fetch 2nd byte of parameter count
invokevirtualg H=MBRU << 8 Shift and save first byte in H
invokevirtualg H=MBRU ORH H = number of parameters

invokevirtuali1o PC = PC + 1; fetch Fetch first byte of # locals

invokevirtual1t TOS=SP-H TOS = address of OBJREF - 1
invokevitual12z TOS=MAR=TOS +1 TOS = address of OBJREF (new LV)
invokevirtuali3 PC =PC + 1; fetch Fetch second byte of # locals
invokevirtuali4 H=MBRU << 8 Shift and save first byte in H
invokevirtualls H=MBRUORH H = # locals

The microprogram for the Mic-1

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

|mplementation of IJVM Using the Mic-1 (5)

Label Operations Comments

invokevirtuali6 MDR = SP + H + 1; wr Overwrite OBJREF with link pointer
invokevirtuall7 MAR = SP = MDR; Set SP, MAR to location to hold old PC
invokevituali8 ~ MDR = OPC; wr Save old PC above the local variables
invokevirtuali9 MAR=SP =S5P +1 SP points to location to hold old LY
invokevirtualzd MDR = LV; wr Save old LV ahove saved PC
invokevirtual2z1 PC = PC + 1; fetch Fetch first opcode of new method.
invokevirtual2z2 LV = TOS: acte Maini Set LV to point to LV Frame

ireturn1 MAR = 8P =LV, rd Reset SP, MAR to get link pointer
ireturn2 Wait for read

ireturn3d LV = MAR = MDR; rd Set LV to link ptr; get old PC

ireturn4 MAR =LV +1 Set MAR to read old LV

ireturns PC = MDR; rd; fetch Restore PC; fetch next opcode

ireturne MAR = SP Set MAR to write TOS

ireturn7 LV = MDR Restore LV

ireturng MDR = TOS; wr; goto Main1 Save return value on original top of stack

The microprogram for the Mic-1

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

|mplementation of IJVM Using the Mic-1 (6)

BIPUSH
(0x10)

BYTE

The BIPUSH instruction format.

ILOAD
(0x15)

INDEX

WIDE
(0xC4)

ILOAD
(0x15)

INDEX
BYTE 1

INDEX
BYTE 2

(@)

a)
b)

(b)

ILOAD with a 1-byte index.
WIDE ILOAD with a 2-byte index.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

|mplementation of IJVM Using the Mic-1 (7)

Theinitia microinstruction

sequence for ILOAD
and WIDE ILOAD. The
addresses are examples.

Address Control store
Ox1FF
ox115 wide_iload1
0x100 Main1
0xC4 wide1
0x15 iload1
0x00

Microinstruction
execution order

WIDE
ILOAD ILOAD
3
1 1
2
2

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

|mplementation of IJVM Using the Mic-1 (8)

[INC

(0x84) INDEX CONST

The I[INC instruction has two different operand fields.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

|mplementation of IJVM Using the Mic-1 (9)

Memory

—~——1 Byte—

n+3
n+2 |OFFSET BYTE 2| |OFFSET BYTE 2| |OFFSET BYTE 2| |OFFSET BYTE 2| |OFFSET BYTE 2
n+1 |OFFSET BYTE 1| |OFFSET BYTE 1| |OFFSET BYTE 1| |OFFSET BYTE 1| |OFFSET BYTE 1

n | GOTO (0xA7) | | GoTo (0xA7) | | GoTo (xa7) | | GoTo (0xA7) | | GoTO (0xA7)
Registers
PCl n || n+1 || n+1 || n+2 || n+2 |
OPC | | | L~ JLn J]
MBR| oxaA7 || oxa7 | [OFFSETBYTE 1| [OFFSET BYTE 1| [OFFSET BYTE 2|
H| |[|| || ||0FFSET1<<8|

(a) (b) (c) (d) (e)

The situation at the start of various microinstructions.
a) Mainl. b) gotol. c) goto2. d) goto3. e€) goto4.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Speed Versus Cost

1. Reduce the number of clock cycles needed to
execute an instruction.

2. Simplify the organization so that the clock cycle
can be shorter.

3. Overlap the execution of instructions.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Merging the Interpreter Loop
with the Microcode (1)

Label Operations Comments

popi MAR=SP=SP-1;rd Read in next-to-top word on stack

pop2 Wait for new TOS to be read from memory
pop3 TOS = MDR; goto Main1 Copy new word to TOS

Main1 PC = PC + 1; fetch; goto (MBR) MBR holds opcode; get next byte; dispatch

Original microprogram sequence for executing POP.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Merging the Interpreter Loop
with the Microcode (2)

Label Operations Comments

pop1 MAR =SP=SP -1;rd Read in next-to-top word on stack
Maini.pop PC =PC + 1; fetch MBR holds opcode; fetch next byte

pop3 TOS = MDR; goto (MBR) Copy new word to TOS; dispatch on opcode

Enhanced microprogram sequence for executing POP.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

A Three Bus Architecture (1)

Label Operations Comments

iload1 H=LV MBR contains index; Copy LV to H

iload2 MAR =MBRU + H; rd MAR = address of local variable to push
iload3 MAR=SP=SP +1 SP points to new top of stack; prepare write
iload4 PC =PC + 1; fetch; wr Inc PC; get next opcode; write top of stack
iload5 TOS = MDR; goto Main1 Update TOS

Main1 PC =PC + 1; fetch; goto (MBR) MBR holds opcode; get next byte; dispatch

Mic-1 code for executing ILOAD.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

A Three Bus Architecture (2)

Label Operations Comments

iloadi MAR =MBRU + LV; rd MAR = address of local variable to push
ilbad2 MAR=SP=5SPFP + 1 SP points to new top of stack; prepare write
ilbad3 PC =PC + 1; fetch; wr Inc PC; get next opcode; write top of stack
iloadd TOS =MDR Update TOS

iload5 PC =PC + 1; fetch; goto (MBR) MBR already holds opcode; fetch index byte

Three-bus code for executing ILOAD.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

A Three Bus Architecture (3)

MBR2
[t i
| I | I,
Shift register
From memory c——=> | | [I [I |
<— IMAR 1 T S I (=1 ¥
-
+1 \
C bus 2 low-order bits B bus
— PC 5 H
T ﬂ:n, 2<4| N
Write PC

A fetch unit for the Mic-1.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

A Three Bus Architecture (4)

Word fetched

Word fetched /’ \
N Word fetched

MBR2 MBR2

Transitions
MBR1: Occurs when MBR1 is read
MBR2: Occurs when MBR2 is read
Word fetched: Occurs when a memory word is read and 4 bytes are put into the shift register

A finite state machine for implementing the |FU.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

"1 Memory
< ! MAR ?:gitsrgrs
B | < o =1
from
main p— T o~ |
A Thr% B US ey Instruction <J_ I___'__Pi:__ ! :
= feth i ta--.hiﬁﬁi%i
Architecture (5) N S
I
— v
Control signals f L
‘? Enable onto B bus ! % PP ‘:HJ—
‘f Wirite C bus to register —"ﬂ'z:
The data path for ctus | 0P =
Mic-2. —__n == Bbu
3 |
A bus
ALU N
control z

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

A Pipelined Design: The Mic-3 (1)

Label Operations Comments

nopi goto (MER) Branch to next instruction

iaddi MAR =5P =5P -1; rd Read in next-to-top word on stack
iadd2 H=TOS H = top of stack

iadd3 MDR = TOS = MDR+H, wr; gote (MBR1) Add top two words, write to new top of stack
isubi MAR =SP=5P-1;rd Fead in next-to-top word on stacik
isub2 H=TOS H = top of stack

isuba MDR = TOS = MDR-H; wr; goto (MBR1) Subtract TOS from Fetched TOSA
iandi MAR =5P =5P -1; rd Read in next-to-top word on stack
iand2 H=TOS H = top of stack

iand3 MDR =TOS =MCR AND H; wr; goto (MBR1) AMD Fetched TOS-1 with TOS
iord MAR =SP =5P -1;rd Read in next-to-top word on stack
ior2 H=TOS H = top of stack

iord MDE=TOS=MCR OR H; wr; goto (MBE1) OR Fetched TOS-1 with TOS

dupi MAR =SP = SP +1 Increment SP; copy to MAR

dup2 MDR = TOS; wr; goto (MBR1) Write new stack word

pop1 MAR =S5P =5P-1;rd Read in next-to-top word on stack
pop2 Wait for read

pop3 TOS = MDR; gota (MBR1) Copy new word to TOS

The microprogram for the Mic-2

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

A Pipelined Design: The Mic-3 (2)

Label Operations Comments 3
swap1 MAR = 5P —1: rd Read 2nd word from stack; set MAR to SP
swap2 MAR = SP Prepare to write new 2nd word

swap3 H=MDR: wr Save new TOS; write 2nd word to stack
swapd MDR =TOS Copy old TOS to MDR

swaps MAR = SP —1; wr Write old TOS to 2nd place on stack
swapb TOS = H; gota (MBR1) Update TOS

bipush1 SP =MAR = 5P + 1 Set up MAR for writing to new top of stack
bipush2 MDR = TOS = MBR1; wr; goto (MBR1) Update stack in TOS and memory

iloadi MAR =LV + MER1U; rd Move LV + index to MAR; read operand
iload2 MAR =5P = 5P + 1 Increment SP: Move new SP to MAR
iload3 TOS = MDR; wr; goto (MBR1) Update stack in TOS and memory

istore MAR = LV + MBR1U Set MAR to LV + index

istore2 MDRE =TOS; wr Copy TOS for stering

istore3d MAR=SP=5SP-1;rd Decremeant SP; read new TOS

istorad Wait for read

istores TOS = MDR; goto (MBR1) Update TOS

wide1 goto (MBR1 OR 0x100) Next address is 0x100 Ored with opcode
wide_jloadt MAR =LV + MBR2U,; rd; goto iload2 Identical to iload1 but using 2-byte index
wide_jstore1 MAR = LV + MBR2U; goto istore2 Identical to istore1 but using 2-byte index
lde_w MAR = CPP + MBR2L); rd; goto iload2 Same as wide_iload1 but indexing off CPP

The microprogram for the Mic-2

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

A Pipelined Design: The Mic-3 (3)

Lahel Operations Comments

finc MAR =LV + MBR1U, rd Set MAA to LV + indax for read

iinc2 k= MBR1 Set H to constant

iinc3 MDR = MDR + H; wr. goto (MBR1) Increment by constant and update
gotod H=PC-1 Copy PCtoH

goto2 FC=H+ MBR2 Add offset and update PC

goto3 Have tc wait for IFU 1o fetch new opcode
gotod gote (MBI Dizpatch to naxt instuction

iflt1 MAR =5P =5P-1;rd Read in next-tz-top word on stack
iflt OPC =TOS Save TOS in OPC temporarily

iflt3 TOS = MDR Put new top of stackin TOS

iflt2 N=0PC; if (N goto T; else goto F Branch on N kit

ifeq1 MAR=SP=5P-1;rd Read in next-to-top word of stack
ifeq2 OPC =TOS Save TOS in OPC temporarily

ifeq3 TOS =MDR Put new top of stack in TOS

ifeq4 Z=0PC: if (Z) goto T: else gota F Eranch on Z bit

if_icmpeq MAR = SP =SP - 1; rd Read in next-to-top word of stack
if_icmpeq2 MAR = SP =5P -1 Set MAR to read in new top-of-stack
if_icmpeq3 H=MDR; rd Copy second stack word to H
if_icmpeq4 OPC =TOS Save TOS in OPC temporarily
if_jempeq5 TOS =MDR Put new top of stack in TOS
if_icmpeq6 Z=H-0PC;if (£) goto T; else goto F If top 2 words are equal, goto T, elss goto F

The microprogram for the Mic-2

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

A Pipelined Design: The Mic-3 (4)

Label Operations Comments

T H=PC - 1; goto goto2 Same as goto1

F H=MRR2 Touch bytas in MBR2 to discard

Fz goto (MBR1)

invokevirtuzd MAR =CPP + MBR2L; rd Put address of method pointer in MAR
invokevirtugl2 ~ OPC =PC Save Return PC in OPC

invokevirtugld PC = MDR Set PC to 1si byte of method code.
invokevirlueld TOS = 3P - MBRz2U TOS = address of OBJREF -1
invokevitugls TOS=MAR =H=TOS5 +1 TOS = address of OBJREF
invakevirtuzals MDR = SP + MBR2U + 1; wr Cwerwrite OBJREF with link pointer
invokevirtugl7 MAR =SP =MDR Set 5P, MAR to location to held old PC
invokevirtuals MDR = OPC; wr Prepare to save old PC

invokevirtugld MAR=5P =5P +1 Inc. SP to point to location to hold old LY
invokevintue10o MDA = LV: wr Save old LV

invokevirtuzald 4

LV - TDS: gato (MBMN1)

Set LV to pont to zaroth parameter,

iretur
iretum2
iretums3
iretumd
iretums
iretumé
iretum?
iretums

MAR =3P =LV, rd

LV = MAR = MDR;

MAR =LV + 1

PC=MDR; rd

MAR =SP

LV - MDA

MDR = TOS; wr; goto (MBR1)

Reset SP, MAR to read Link ptr

Wait far link ptr

Set LV, MAR to link ptr; read old PC
Set MAR to point to old LV; read old LV
Hestore PC

Reatore LV
Save return value on original top of stack

The microprogram for the Mic-2

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

| registers
To - !—— ‘ -
Three Bus 3 — R -
mermory — _PC
- Instruction R
Architecture = B e i3 =
TSP??
Contrel signals f = f|3£'|3
4 Enable onto B bus » cPP ?”T\‘I
* Write C bus to register 5 TOS ??!_"
Cbus — OPC [E—
The three-bus data path LI — — obe
used } rt ™ A b
in the Mic-3. [aen [s]
control i
l

Tanenbaum, Structured Computer Orgi

e = Memory
— MAR ; control

|mplementation of SWAP (1)

Label Operations

Comments

swapl MAR=5P-1;rd
swap2 MAR=SP

swap3 H=MDH; wr

swapd MDR=TOS

swaps5 MAR=S5P - 1;wr
swapé TOS =H; goto (MBR1)

Read 2nd word from stack; set MAR to SP
Prepare to write new 2nd word

Save new TOS; write 2nd word to slack
Copy old TOS to MDR

Write old TOS to 2nd place on stack
Update TOS

The Mic-2 code for SWAP.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

|mplementation of SWAP (2)

Swap1 Swap2 | Swap3 Swap4 Swap5 Swap6
Cy |MAR=SP—1:rd |MAR=SP [H=MDR;wr |MDR=TOS |MAR=SP—1;wr |TOS=H;goto (MBR1)
1|B=SP
2 |C=B- B=SP
3 |MAR=C;rd |C=B
4 |MDR=Mem |MAR=C
5 B=MDR
6 C=B B=TOS
7 H=C;wr |C=B B=SP
8 Mem=MDR|MDR=C |C=B1 B=H
9 MAR=C:; wr |C=B
10 Mem=MDR |TOS=C
11 goto (MBR1)

The implementation of SWAP on the Mic-3.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Graphical illustration of
how a pipeline works.

Instruction

¥

Cycle 4

Cycle 1

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

A Seven-Stage Pipeline: The Mic-4 (1

Micro-op Final
icro-
@ \ @ i”?ex Queueing unit @
From wy Micro-cperalion ROM
memory « I" i 1ADD
Instruction :> = ISUB
fetch unit = | > ILOAD
Queue
of pending
micro-ops
Taolfrom]]
memaory
® Drives stage 4 [ALU[C__ | M[A[Bje— MIR1
3 i

Registers

Drives stage 5 MIR2

[ALU] € TM[A[E]

Drives stage 6 [ALU] _C [M[A[Ble— MIR3

Diives stage 7 [ALU] _C_[M[A] Ble— MIR4
AV VA

The main components of the Mic-4.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

A Seven-Stage Pipeline: The Mic-4 (2

® @ ® O, ® ® @

IFU | Decoder (=~ Queue |Operands—{ Exec = hbn':;gf —= Mermory

The Mic-4 pipeline.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

CPU

Cache Memory

package

Processor _,
board

CPU chip Unified
L2 Unified
cache L3 cache
=, F
Keyboard Graphics Disk
controller controller controller

Main
Memory
(DRAM)

Split L1 instruction and data caches

Board-level cache (SRAM)

A system with three levels of cache.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Valid Addresses that use this entry
Entry l Tag Data
2047 [] [| BEEN4-REA35, 121040-131071,
A A, A,
-
§
5
4
3 96-127, 65632-65663, 131168-131199
2 64-95, 85600-65631, 131136-131157, ...
1 3263, 60068-60099, 131104131135, ...
] 0-31, 65536-65567, 131072-131103, ...
a)
Bits 16 11 3 2
TAG LINE WORD [BYTE

Direct-Mapped Caches

(b)

(@) A direct-mapped cache. (b) A 32-hit virtual address.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Set-Associative Caches

Valid Valid Valid Valid
| | | |
y Tag Data 4 Tag Data | Tag Data | Tag Data
2047
7
&
5
4
3
2
1
0
. iy i y i y i y
Entry A Entry B Entry C Entry D

A four-way set-associative cache.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Branch Prediction

if {i==0) CMP i,0 : compare i to 0
=1; BNE Else ; branch to Else if not equal
alse Then: MOV K1 :moveliok
k=2 BR Next : unconditional branch to Next
Else: MOVEKZ2 :move2iok
Mext:
(a) (b)

(@) A program fragment.
(b) Itstrand ation to a generic assemblylanguage.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Dynamic Branch Prediction (1)

Branch/ Prediction
Valid no branch Valid e Valid bits
l Branch Branch Pregilglon Branch Target
Slot addressitag l Slotl addressitag .0 Slotl addressitag l address

Ad; AL AL LLL A, & A,
6 B &

5 5 5

4 4 4

3 3 3

2 2 2

1 1 1

0 0 0

(@) A 1-bit branch history. (b) A 2-bit branch history. (c) A mapping
between branch instruction address and target address.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Dynamic Branch Prediction (2)

No branch —_— Branch
L 1 v b
00 11
] Predict Predict]
Predict no branch branch Predict
no branch ane more ohne more branch

time time

Mo branch

A 2-bit finite-state machine for branch prediction.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Out-of-Order Execution and Register Renaming (1)

Registers being read || Registers being written
Cy | # | Decoded Iss |Ret [0 |1(2|3|4(5(|6|7|0[(1[|2|3|4[5|6|7
1 | 1| R3=R0+R1| 1 101 1
2 | R4=RO+R2 | 2 2111 11
2| 3| R5=RO+R1| 3 3|21 111
4 | R6=R1+R4 | - 3121 1111
3 3121 111
4 1 211 111
2 111 1
3
5 4 1 1 1
5| R7=R1*R2 | 5 211 1 111
6 | 6 | R1=R0-R2 | - 211 1 111
7 4 111 1
B 5

A superscalar CPU with in-order issue and in-order compl etion.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Out-of-Order Execution and Register Renaming (2)

Registers being read

Registers being written

Cy

Decoded

Iss

Ret

1|2

3

4

5

6

7

0|1

2

3

4

5

6

7

R3=R3*R1

10

0
1 1
1 1
1 1

1
1
1

11

12

R1=R4+R4

13

14

— | = | = =

= | = | = =

= | = | = =

15

16

17

18

A superscalar CPU with in-order issue and in-order compl etion.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Out-of-Order Execution and Register Renaming (3)

Registers being read (|Registers being written
Cy | # | Decoded Iss |Ret |0 |1]|2|3|4|5|6|7|/0f1(2|2|4(5|6|7
1 1 | R3=R0*xR1 | {1 1 (1 1
2 | R4=RO+R2 | 2 2011 11
2 | 3| R5=RO+R1| 3 3|z 1011
4 | R6=R1+R4 | - 3alz2|1 1011
3 | 5| R7=R1*R2| & 3|3|2 1011 1
6 | S1=R0-R2 | & 4(3|3 1011 1
2 ||3|3]|2 1 1 1
4 3|42 1 1 1011
7 | R3=R3*S81 | - 3|42 1 1 1011
8 | S2=R4+R4 | 8 3|42 3 1 1011
1 2(3|2 3 1011
3 1(2|2 3 1 (1
5 21 3 1 1 (A
5 7 21113 1 1 1 (1
4 1(1(1]2 1 1 1
5 1|2 1 1
8 1 1
7 1 1
8 1 1
7

Operation of a superscalar CPU with out-of-order issue
and out of-order completion.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Speculative Execution

evensum = 0;
oddsum = 0;
i=0;

while (i < limit) {
k=ixixi
if (((i12) = 2) ==)
evensum = evensum + k;
else
oddsum = oddsum + k;

i=i+1;

(a)

evensum = 0;
oddsum = 0;
i=0;

B

i >= limit

while (i < limit)
Y

K=i*ix*i;

if ((i12) *» 2) = =)

T \FA

evensum = evensum + k; oddsum = oddsum + k;

i=i+1;
L

(b)

a) A program fragment.
b) The corresponding basic block graph.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

Overview of the NetBurst Microarchitecture

]/T To memory bus

Execution unit

I | Memory subsystem
N

System interface

!

Level 1
data cache

.

Level 2 cache
(instructions and data)

r Y

A 4

Integer and floating-point
execution units

h 4

Fetch/decode| | Trace

unit cache

Schedulers

Retirement
unit

|

Branch prediction

unit

Front end

Out-of-order control

The block diagram of the Pentium 4.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The NetBurst

Pipeline

A simplified view of

the Pentium 4 data
path.

|

. L1
D t
ecode uni BTB
Front l
end Microcode Trace
ROM Trace cache BTB
A 4 r
-
Allocation/Renaming unit
Out- l l L2
of- < Non- Memory cache
order memory queue
control queue
| [ALU sched [ALU sched] [Load sched| [Store sched] +
| 1 —]
> Floating-point register file Integer register file ;_
Move oa
l\-FJMMX sy l\-lnté 1\-lnt%
SSE
A 4
| L1data
A 4 h 4 h 4 ca'Che

Retirement unit

]

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

To/from
memory

Overview of the UltraSPARC 111 Cu

Microarchitecture

To memory
_ System interface >
Instruction Y L
cache L2 cache controller |e ™
____________ L2
Y Memory controller cache
Branch| | Instruction (off chip)
table issue unit
| h 4 ‘ F Y
Instruction Data Prefetch Write
buffer cache cache cache
| F 3
¥ b A 4
FPfgraphlcs Integgr Load/store
execution || execution ;
. . unit
unit unit

The block diagram of the UltraSPARC 111 Cu.

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

UltraSPARC 11 ==

Cu Pipeline

A simplified
representation of the
UltraSPARC 111 Cu
pipeline.

———=——— . . S

Y\Address multiplexor ,;

E Floating-point T _
ister file Ly D S8
P e gy gt I Wy - __ g
cache v2S
2 - @

c © =1 > 5 ¢
-4+-1 3} S| Ht-t-—-1 [Y — prefetch |-—|-|-—4 =

Si2 g i= Sign extend] | gache
M Six == & alignment

=lw =la
-+—| Ei£ Ei8 g =

81§ a5

5l 2 ol E -
bl 2i6 =10
— | I L o L T T |

§ I 21 L2
X cache
il It St it il Aty A Store [~~~

ueue
T q
D .
| Write cache '—’

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

The Microarchitecture of the 8051 CPU

Main bus

ﬂ

ROM

ﬁ Local bus

ROM ADDR

BUFFER

PC incrementer

The microarchitecture
of the 8051.

PC

DPTR

Timer 0

Timer 0

Timer 0

- LIt

ftr 1 1

il

i
!

Port 3

Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc. All rights reserved. 0-13-148521-0

