inst.eecs.berkeley.edu/~csGlc/su06

CS61C : Machine Structures
Lecture #11: Floating Point

= o ———— —— . —
- - -

‘ Lhelt » LY

2006-07-17

Q CS 61C L11 Floating Point (1) A Carle, Summer 2006 © UCB

Quote of the day

“95% of the
folks out there are
completely clueless
about floating-point.”

James Gosling

Sun Fellow
Java Inventor
1998-02-28

@ CS 61C L11 Floating Point (2)

Review of Numbers

e Computers are made to deal with
numbers

 What can we represent in N bits?
* Unsigned integers:
0 to 2N-1
* Signed Integers (Two’s Complement)
-2(N-1) to 2(N-1) . 4

ﬂ CS 61C L11 Floating Point (3) A Carle, Summer 2006 © UCB

Other Numbers

« What about other numbers?

*Very large numbers? (seconds/century)
3,155,760,000,, (3.15576,, x 10°)

e Very small numbers? (atomic diameter)
0.00000001,, (1.0,, x 10°8)

* Rationals (repeating pattern)

2/3 (0.666666666. . .)
e Irrationals
21/2 (1.414213562373. . .)

e Transcendentals
e (2.718...), n (3.141...)

* All represented in scientific notation

CS 61C L11 Floating Point (4) A Carle, Summer 2006 © UCB

Scientific Notation (in Decimal)

mantissa _—~exponent
T~6,02,, x 102

decimal point radix (base)

* Normalized form: no leadings 0s]
(exactly one digit to left of decimal point)

 Alternatives to representing 1/1,000,000,000
* Normalized: 1.0x 10°
* Not normalized: 0.1 x 108,10.0 x 10-1°

ﬂ CS 61C L11 Floating Point (5) A Carle, Summer 2006 © UCB

Scientific Notation (in Binary)

mantissa _—~exponent
1.0, x 21

two

“binary point” radix (base)

* Normalized mantissa always has exactly
one “1” before the point.

» Computer arithmetic that supports it called
floating point, because it represents
numbers where binary point is not fixed, as
it is for integers

e Declare such variable in C as f | oat

ﬂ CS 61C L11 Floating Point (6) A Carle, Summer 2006 © UCB

Floating Point Representation (1/2)

* Normal format: +1.XXXXXXXXXX4,,,*2YYYVtwo
* Multiple of Word Size (32 bits):

3130 2322 0
Exponent Significand

1 bit 8 bits 23 bits
represents

* Exponent represents y’s
« Significand represents x’s

Represent numbers as small as
Q 2.0 x 1038 to as large as 2.0 x 1038

CS 61C L11 Floating Point (7) A Carle, Summer 2006 © UCB

Floating Point Representation (2/2)

« What if result too large? (> 2.0x1038)
e Overflow!

e Overflow = Exponent larger than
represented in 8-bit Exponent field

* What if result too small? (>0, < 2.0x10-33)
e Underflow!

* Underflow = Negative exponent larger than
represented in 8-bit Exponent field

e How to reduce chances of overflow or
underflow?

ﬂ CS 61C L11 Floating Point (8) A Carle, Summer 2006 © UCB

Double Precision Fl. Pt. Representation
* Next Multiple of Word Size (64 bits)

3130 20 19 0
IS| Exponent Significand
1 bit 11 bits 20 bits
Significand (cont’d)
32 bits

* Double Precision (vs. Single Precision)
 C variable declared as doubl e

* Represent numbers almost as small as
2.0 x 10-308 {0 almost as large as 2.0 x 10308

e But primary advantage is greater accuracy
(&(due to larger significand

CS 61C L11 Floating Point (9) A Carle, Summer 2006 © UCB

QUAD Precision FIl. Pt. Representation
* Next Multiple of Word Size (128 bits)

* Unbelievable range of numbers
* Unbelievable precision (accuracy)
 This is currently being worked on

* The version in progress has 15 bits for
the exponent and 112 bits for the
significand

ﬂ CS 61C L11 Floating Point (10) A Carle, Summer 2006 © UCB

IEEE 754 Floating Point Standard (1/4)
« Single Precision, DP similar

« Sign bit: 1 means negative
0 means positive
 Significand:

* To pack more bits, leading 1 implicit for
normalized numbers

*1 + 23 bits single, 1 + 52 bits double

*Note: 0 has no leading 1, so reserve
exponent value 0 just for number 0

ﬂ CS 61C L11 Floating Point (11) A Carle, Summer 2006 © UCB

IEEE 754 Floating Point Standard (2/4)

« Kahan wanted FP numbers to be used
even if no FP hardware; e.g., sort records
with FP numbers using integer compares

 Could break FP number into 3 parts:
compare signs, then compare exponents,
then compare significands

* Wanted it to be faster, single compare if
possible, especially if positive numbers

 Then want order:
* Highest order bit is sign (negative < positive)
* Exponent next, so big exponent => bigger #
QSignificand last: exponents same => bigger #

CS 61C L11 Floating Point (12) A Carle, Summer 2006 © UCB

IEEE 754 Floating Point Standard (3/4)

* Negative Exponent?
e2’s comp? 1.0 x 271 v. 1.0 x2+1 (1/2 v. 2)

1/210{ 1111 1111{000 0000 0000 0000 0000 0000
2 |0] 0000 0001|000 0000 0000 0000 0000 0000

* This notation using integer compare of
1/2 v. 2 makes 1/2 > 2! _
e Instead, pick notation 0000 0001 is most
negative, and 1111 1111 is most positive

e1.0x21v.1.0 x2+1 (1/2 v. 2)
1/210{ 0111 1110/000 0000 0000 0000 0000 0000

2 |0] 1000 0000|000 0000 0000 0000 0000 0000

ﬂ CS 61C L11 Floating Point (13) A Carle, Summer 2006 © UCB

IEEE 754 Floating Point Standard (4/4)

« Called Biased Notation, where bias is
number subtracted to get real number

* |[EEE 754 uses bias of 127 for single prec.

e Subtract 127 from Exponent field to get
actual value for exponent

 Summary (single precision):

3130 23 22 0
S| Exponent Significand
1 bit 8 bits 23 bits

*(-1)° x (1 + Significand) x 2(Exponent-127)

* Double precision identical, except with
Z exponent bias of 1023

CS 61C L11 Floating Point (14) A Carle, Summer 2006 © UCB

0| 0111 1101|0000 0000 0000 0000 0000 000

Is this floating point number:
> 07?
=07

< 0?

ﬂ CS 61C L11 Floating Point (15) A Carle, Summer 2006 © UCB

Understanding the Significand (1/2)

* Method 1 (Fractions):

* Advantage: less purely numerical, more
thought oriented; this method usually

helps people understand the meaning of
the significand better

ﬂ CS 61C L11 Floating Point (16) A Carle, Summer 2006 © UCB

Understanding the Significand (2/2)

* Method 2 (Place Values):

e Convert from scientific notation

eIn decimal: 1.6732 = (1x10°) + (6x107) +
(7x102) + (3x103) + (2x104)

eln binary: 1.1001 = (1x2%) + (1x2) +
(0x22) + (0x23) + (1x24)

* Interpretation of value in each position
extends beyond the decimal/binary point

* Advantage: good for quickly calculating
significand value; use this method for
translating FP nhumbers

ﬂ CS 61C L11 Floating Point (17) A Carle, Summer 2006 © UCB

Example: Converting Binary FP to Decimal

o] 0110 1000[101 Q107 0100 0011 0100 0010
« Sign: 0 => positjv

* Exponent:
*0110 1000,,.4 = 104,
* Bias adjustment] 104 7127 x -2

« Signifigand:
o1 + 1x21+ 0x22 + 1x23 + Ox24 + 1x27 +...

=1+271423 $25 +2°7 429 +2°14 $2-15 4.2°17 42-22
=1.0,, + 0.666115,,

* Represents: 1.666115,,,*223 ~ 1.986*10~7
(about 2/10,000,000)

CS 61C L11 Floating Point (18) A Carle, Summer 2006 © UCB

Peer Instruction #1

What is the decimal equivalent
of this floating point number?

1] 1000 0001|111 0000 0000 0000 0000 0000

ﬂ CS 61C L11 Floating Point (19) A Carle, Summer 2006 © UCB

Answer
What is the decimal equivalent of:

1{ 1000 0001 1111 0000 0000 0000 0000 0000
Exponent Significand
(-1)° x (1 + Significand) x 2(Exponent-127)
(-1)" x (1 +.111) x 2(129-127)
-1 x(1.111) x 2

-111.1 1: -1.75
2: 3.5
-7.5 3: -3.75

7 -7 * 27129
8 -129 * 2A7

ﬂ CS 61C L11 Floating Point (20) A Carle, Summer 2006 © UCB

Converting Decimal to FP (1/3)

« Simple Case: If denominator is an
exponent of 2 (2, 4, 8, 16, etc.), then
it’s easy.

« Show MIPS representation of -0.75

¢-0.75 =-3/4

e-11,,,/100,,, =-0.11,,,

* Normalized to -1.1,,,, x 27

*(-1)% x (1 + Significand) x 2(Exponent-127)

e (-1)' x (1 +.100 0000 ... 0000) x 2(126-127)

1| 0111 1110[{100 0000 0000 0000 0000 0000

CS 61C L11 Floating Point (21) A Carle, Summer 2006 © UCB

Converting Decimal to FP (2/3)

*Not So Simple Case: If denominator is
not an exponent of 2.

* Then we can’t represent number precisely,
but that’s why we have so many bits in
significand: for precision

* Once we have significand, normalizing a
number to get the exponent is easy.

*So how do we get the significand of a
never-ending number?

ﬂ CS 61C L11 Floating Point (22) A Carle, Summer 2006 © UCB

Converting Decimal to FP (3/3)

e Fact: All rational numbers have a
repeating pattern when written out in
decimal.

 Fact: This still applies in binary.

 To finish conversion:

» Write out binary number with repeating
pattern.

e Cut it off after correct number of bits
(different for single v. double precision).

* Derive Sign, Exponent and Significand
fields.

ﬂ CS 61C L11 Floating Point (23) A Carle, Summer 2006 © UCB

Example: Representing 1/3 in MIPS

*1/3
= 0.33333...4,
= 0.25 + 0.0625 + 0.015625 + 0.00390625 + ...
=1/4 + 1/16 + 1/64 + 1/256 + ...
=22 +2%44+26 4284+ .,
= 0.0101010101... ,* 20
=1.0101010101... , * 272
*Sign: 0
s Exponent =-2 + 127 =125 = 01111101
* Significand = 0101010101...
Q(Lg 0111 1101|0101 0101 0101 0101 0101 0]0

T1 Floating Point (24) A Carle, summer ucB

Administrivia

* Project 1 Due Tonight
* HW4 will be out soon

* Midterm Results (out of 45 possible):
* Average: 31.25
e Standard Deviation: 8
* Median: 30.875
e Max: 44
* Will be handed back in discussion

Q CS 61C L11 Floating Point (25) A Carle, Summer 2006 © UCB

“Father” of the Floating point standard

IEEE Standard

/54 for Binary

Floating-Point
Arithmetic.

1989
ACM Turing
Award Winner!

A= =\

www. cs. ber kel ey. edu/ ~wkahan/
.1 eee754st atus/ 754story. ht m

ﬂ CS 61C L11 Floating Point (26) A Carle, Summer 2006 © UCB

Prof. Kahan

Representation for + o

*In FP, divide by 0 should produce + o,
not overflow.

 Why?

* OK to do further computations with o
E.g., X/0 > Y may be a valid comparison

* Ask math majors

 IEEE 754 represents + «
* Most positive exponent reserved for o«
* Significands all zeroes

ﬂ CS 61C L11 Floating Point (27) A Carle, Summer 2006 © UCB

Representation for 0

* Represent 0?

* exponent all zeroes

* significand all zeroes

* What about sign?

«+0: 0 00000000 00000000000000000000000

«-0: 1 00000000 00000000000000000000000
 Why two zeroes?

* Helps in some limit comparisons

* Ask math majors

ﬂ CS 61C L11 Floating Point (28) A Carle, Summer 2006 © UCB

Special Numbers

« What have we defined so far?
(Single Precision)

Exponent Significand Object

0 0 0

0 nonzero ?2??
1-254 anything +/- fl. pt. #
255 0 +/- oo

255 nonzero ?2?7?

* Professor Kahan had clever ideas;
“Waste not, want not”

Q e Exp=0,255 & Sig!=0 ...

CS 61C L11 Floating Point (29) A Carle, Summer 2006 © UCB

Representation for Not a Number

eWhatissqgrt(-4.0)or0/0?

e |lf o not an error, these shouldn’t be
either.

e Called Not a Number (NaN)

* Exponent = 255, Significand nonzero
e Why is this useful?

* Hope NaNs help with debugging?

* They contaminate: op(NaN,X) = NaN

ﬂ CS 61C L11 Floating Point (30) A Carle, Summer 2006 © UCB

Representation for Denorms (1/2)

* Problem: There’s a gap among
representable FP numbers around 0

* Smallest representable pos num:
a=1.0...,*2126 = 2126

* Second smallest representable pos num:
b =1.000......1 , * 2126 = 2126 ;. 2-149

a-0=212
Normalization
b-a=2149 and implicit 1
Gaps! is to blame!
b
- CD<—H+\-H+\-@I0@-<;+H+H—> + 00

ﬂ CS 61C L11 Floating Point (31) A Carle, Summer 2006 © UCB

Representation for Denorms (2/2)

e Solution:

* We still haven’t used Exponent = 0,
Significand nonzero

* Denormalized number: no leading 1,
implicit exponent = -126.

* Smallest representable pos num:
a= 2-149

* Second smallest representable pos num:
b= 2-148

= 00 -+ oo
0 ¥ @

ﬂ CS 61C L11 Floating Point (32) A Carle, Summer 2006 © UCB

Peer Instruction 2

1. Convertingfl oat ->int ->fl oat
produces same f | oat number

2. Convertingint ->fl oat ->int
produces same i nt nhumber

3. FP add is associative:
(x+y)+z = x+(y+z)

ﬂ CS 61C L11 Floating Point (33) A Carle, Summer 2006 © UCB

“And in conclusion...”

* Floating Point numbers approximate
values that we want to use.

 |[EEE 754 Floating Point Standard is most
widely accepted attempt to standardize
interpretation of such numbers

* Every desktop or server computer sold since
~1997 follows these conventions

 Summary (single precision):

3130 23 22 0
S| Exponent Significand
1 bit 8 bits 23 bits

«(-1)S x (1 + Significand) x 2(Exponent-127)
* Double precision identical, bias of 1023

CS 61C L11 Floating Point (34) A Carle, Summer 2006 © UCB

