Exercises 35

switches through programming language-like behavioral descriptions.
Finally, we have reviewed the changing technological landscape, focus-
ing on the new approaches for building digital systems more rapidly:
computer-aided design tools and user-programmable devices. We are
now ready to begin a more serious study of the design and implementa-
tion techniques for digital systems.

A very good description of the design process can be found in Chapter 3
of S. Dasgupta’s book Computer Architecture: A Modern Synthesis, John
Wiley, New York, 1989. An excellent discussion of a variety of program-
mable logic technologies can be found in R. C. Alford’s book, Program-
mable Logic Designer’s Guide, published by Howard W. Sams & Co.,
Indianapolis, IN, in 1989. For those not familiar with the basic back-
ground concepts of electronics, a gentle introduction can be found in T.
M. Frederiksen’s work, Intuitive Digital Computer Basics, published by
McGraw-Hill, New York, in 1988 (the entire “Intuitive” series is quite
good). The classic text on digital design for very large scale integrated cir-
cuits is by Carver Mead and Lynn Conway, Introduction to VLSI Systems,
Addison-Wesley, Reading, MA, 1980. The complete spectrum of com-
puter-aided design tools is described in Steven Rubin’s text Computer
Aids for VLSI Design, Addison-Wesley, Reading, MA, 1987. Carlo Séquin
covers the issues involved in managing the complexity of large complex
digital designs in his paper “Managing VLSI Complexity: An QOutlook,”
which appeared in Proceedings of the IEEE, 71:1, 149166 (January 1983).

P
(4

(7%

Ex

(Description of Digital System Behavior) Develop flowchart-like
diagrams similar to Figure 1.2 for the following variations on the
basic traffic light controller described in Section 1.1.1. Make
reasonable assumptions about the duration of lights if not other-
wise specified. Consider each variation independently (each is
independent of the original specification represented by

Figure 1.2).

a. Suppose a left-turn arrow is added, but only in the direction
of drivers facing North from the South (they wish to make left
turns from South to West). The green arrow should be illumi-
nated for 15 seconds, and during this time the lights are red
for East-West and red for the South-facing traffic. The drivers
facing North see the sequence: green arrow (15 seconds), green
(30 seconds), yellow (15 seconds), red (60 seconds), and
repeat. From this specification, you should be able to deter-
mine the light timings for the other three directions.

383

1]
[}

36 Chapter 1 Introduction

SE

Figure Ex1.1 Intersection for
Exercise 1.1(d).

1.2

1.3

1.4

b. Consider adding Walk-Don’t Walk signs in all directions.
These cycle through green Walk, flashing red Don’t Walk, and
solid red Don’t Walk. The lights are green for 30 seconds,
flashing red for 15 seconds, and solid red for 75 seconds.

¢. In all directions, add push-buttons that have the following
effect: if the light is red in the direction in which the pedes-
trian wishes to cross, the green time duration in the other
direction is reduced from 45 to 30 seconds. Pushing the
button more than once or from more than one corner has no
further effect.

d. Consider the design of a traffic light for a five-way intersec-
tion. The directions are N-S, E-W, and SE (see F igure Ex1.1).
No direction should be green for more than 45 seconds and
yellow for more than 15. Every direction should eventually
see a green light. Warning: Make sure you never have more
than one direction green at the same time!

(Design as Assembly) Think of a complex system that you know
well, such as the automobile you drive or the structure in which
you live.

a. Describe the decomposition of this “complex object” into ever
more primitive components, stopping at a reasonable level of
“most primitive” component (e.g., a brick, a nail, a piece of
lumber).

b. Consider some alternative representations of your complex
system. Briefly explain what they are. (Hint: Do the electrician
and the sanitation engineer refer to the same representation of
your house when they need to repair something?)

(Logical Statements) Write logic statements for the traffic light
variants of Exercise 1.1, using IF-THEN statements and AND, OR,
and NOT connectives, as described in Section 1.2.1.

(Logical Statements) Make the following assumptions about a
burglar alarm system in your home: (1) you cannot set the alarm
unless all windows and doors are closed; (2) the system is “pre-
set” if (1) is true and the secret code has been entered: (3) the
system is “set” if (2) is true and 45 seconds have elapsed since
presetting the alarm; (4) if the alarm is set, opening any window
or a door other than the front door will cause the alarm to sound
immediately; (5) if the front door is opened and the alarm is set,
it will sound if the system is not disarmed within 30 seconds; (6)
the system is disarmed by entering the secret code. Write logic

- statements for:

1.5

1.6

1.7

1.8

Exercises 37

a. Setting the alarm
b. Disarming the alarm
c. Sounding the alarm

(Analog vs. Digital) Consider the inverter transfer characteristic
described in Section 1.2.3. Suppose two inverter circuits are
placed in series so that the output of the first inverter is the input
to the second inverter. Assume initially that the input to the first
stage is a logic 1 represented by 5 volts. Of course, the output of
the second stage will be identical, at least initially. Describe what
happens to the outputs of the first and second stages as the first
stage input slowly changes from 5 volts to 0 volts. Do this by
drawing a graph whose X axis is time and whose Y axis is volt-
age, showing two curves, one each for (a) the first stage output
and (b) the second stage output.

(Combinational vs. Sequential Circuits) Which of the following
contain circuits that are likely to be combinational and which
contain sequential circuits? Explain your rationale.

a. A washing machine that sequences through the soak, wash,
and spin cycles for preset periods of time.

b. A three-input majority circuit that outputs a logic 1 if any two
of its inputs are 1.

¢. A circuit that divides two 2-bit numbers to yield a quotient
and a remainder.

d. A machine that takes a dollar bill and gives three quarters,
two dimes, and a nickel in change, one at a time through a
single coin change slot.

e. A digital alarm clock that generates an alarm when a preset
time has been reached.

(Switching Networks) Draw switching networks as described in
Section 1.3.1 for the three conditions of Exercise 1.4.

(Switching Networks) Although we concentrate mostly on gate-
level designs in the following chapters, switching logic as
described in Section 1.3.1 is quite useful for functions that
“steer” inputs to outputs, such as shifters and multiplexers/
demultiplexers. The functions of these devices are described by
the following specifications. Design networks of switches for the
following functions:

a. A 2-bit-wide shifter takes two input signals, iy and i;, and
shifts them to two outputs, oy and o0,, under the control of a
shift signal. If this signal SHIFT is false, then the inputs are
connected straight through to the outputs. If SHIFT is true,
then i is routed to o, and o, should be set to a 0.

38 Chapter 1 Introduction

o~

1.9

1.10

1.11

1.12

(a)

b. A 1-bit demultiplexer takes an input signal IN and shifts it to
one of two outputs, oy and o4, under the control of a single
SELECT signal. If SELECT is 0, then IN is connected through
to oy and 0, is connected to a 0. If SELECT is 1, then IN is
connected to 0, and oy should be connected to a 0.

c. A 2-bit multiplexer takes two input signals, i, and 7;, and
shifts one of them to the single output OUT under the control
of a 1-bit select signal. If the SELECT signal is false, then i, is
passed to OUT. If SELECT is true, then I; is passed to OUT.

(Truth Tables) Write truth tables for the three functions of
Exercise 1.8.

(Boolean Algebra) Write sum of products expressions for the
truth tables of Exercise 1.9.

(Gates) Given the Boolean expressions of Exercise 1.10, draw
logic schematics using AND, OR, and INVERT gates that imple-
ment those functions.

(Design Representations) Examine the three switching networks
in Figure Ex1.12. Write a truth table for each of the networks.
For each input combination, describe briefly how the network
operates.

in ing ing ing ing

1 10 I 10
out rd —oout
0 7 —oout

() (c)

Figure Ex1.12 Switching networks for Exercise 1.12.

1.13

1.14

1.15

(Waveforms) Trace the propagation of 1’s and 0’s through the
half adder of Section 1.3.4 to explain why the glitch occurs when
the inputs switch from A=0, B=1to A=1, B=0. Assume all
gates have the same delay of 10 time units.

(Block Diagrams) Given the truth table for the half adder, show

that the composition of two half adders and an OR gate as in
Section 1.3.6 yields the same truth table as the full adder.

(Waveform Verification) This chapter has described two differ-
ent gate-level implementations for a full adder circuit: direct
implementation, as in Figure 1.22, and hierarchical implementa-
tion via cascaded half adders, as in Figure 1.25(a). Would you

1.16

1.17

1.18

1.19

1.20

Exercises 39

expect the waveform behaviors of these implementations to be
identical? Justify your answer.

(Behaviors) Write a program in your favorite programming lan-
guage that mimics the behavior of (a) the basic traffic light con-
troller of Section 1.1.1 and the four variations (b through e)
described in Exercise 1.1.

(Synthesis) Simplify the following Boolean expressions by
examining their truth tables for simpler terms that cover multiple
1’s rows of the truth table:

F(A, B,C) = ABC+ABC+ABC+ABC+ABC
F(A,B,C) = ABC+ABC+ABC+ABC

(Programming with 1’s and 0’s) Describe the contents of a mem-
ory that you would use to implement the three functions of Exer-
cise 1.8. Identify the address inputs and signal outputs.

(Truth Tables) Consider a function that takes as input two 2-bit
numbers and produces as output a 3-bit sum. Write the truth
table for this function.

(Truth Tables) An increment-by-1 function takes a single-bit
input and generates a Sum and Carry as follows. If the input is 0,
Sum is 1 and Carry is 0. If the input is 1, Sum is 0 and Carry is
1. Using the truth table for the full adder, demonstrate that you
can implement the increment-by-1 function by setting Cin of the
full adder to 1 while the B input is set to 0. Can you think of any
reasons why it may be advantageous to use a standard building
block like the full adder rather than a special circuit?

