
Contemporary Logic Design
Computer Organization

Chapter #11: Computer Organization

Contemporary Logic Design

Randy H. Katz
University of California BerkeleyUniversity of California, Berkeley

July 1993

© R.H. Katz Transparency No. 11-1

Contemporary Logic Design
Computer OrganizationMotivation

C t D i li ti f di it l l i d i d• Computer Design as an application of digital logic design procedure

• Computer = Processing Unit + Memory Systemp g y y

• Processing Unit = Control + Datapath

• Control = Finite State Machine

I t M hi I t ti D t th C ditiInputs = Machine Instruction, Datapath Conditions

Outputs = Register Transfer Control Signals

Instruction Interpretation = Instruction Fetch, Decode, Execute

• Datapath = Functional Units + Registers• Datapath = Functional Units + Registers

Functional Units = ALU, Multipliers, Dividers, etc.

R i t P C t Shift St R i t

© R.H. Katz Transparency No. 11-2

Registers = Program Counter, Shifters, Storage Registers

Contemporary Logic Design
Computer OrganizationChapter Overview

Design of Datapaths and Processor Control UnitsDesign of Datapaths and Processor Control Units

• Datapath interconnection strategies:

P i t t P i t Si l B M lti l BPoint-to-Point, Single Bus, Multiple Busses

• Structure of the State Diagram/ASM Chart to describe controller FSMg

© R.H. Katz Transparency No. 11-3

Contemporary Logic Design
Computer OrganizationStructure of a Computer

Block Diagram View

Central
Processing Processor Memory

S t

Address

Read/Write
Processing

Unit
(CPU)

SystemData

Control
Signals

Control Datapath
Signals

Data
Inputs

Execution UnitInstruction Unit

p

Functional Units
and Registers

Instruction fetch
and interpretation
FSM

© R.H. Katz Transparency No. 11-4

Contemporary Logic Design
Computer OrganizationStructure of a Computer

Example of Instruction Sequencing

Instruction: Add Rx to Ry and place result in Rz

Step 1: Fetch the Add instruction from Memory to Instruction Reg

Step 2: Decode Instruction

Instruction in IR is an ADD

Source operands are Rx, Ry

Destination operand is Rz

St 3 E t I t tiStep 3: Execute Instruction

Move Rx, Ry to ALU

Set up ALU to perform ADD function

ADD Rx to Ry

© R.H. Katz Transparency No. 11-5

Move ALU result to Rz

Contemporary Logic Design
Computer OrganizationStructure of a Computer

Instruction Types

• Data Manipulation

Add Subtract etcAdd, Subtract, etc.

• Data Staging

Load/Store data to/from memory

Register-to-register moveg g

• Control

Conditional/unconditional branches

subroutine call and return

© R.H. Katz Transparency No. 11-6

Contemporary Logic Design
Computer OrganizationStructure of a Computer

Control

Elements of the Control Unit (aka Instruction Unit):

Standard FSM things:

State Register

Next State Logicg

Output Logic (datapath control signaling)

Plus Additional "Control" Registers:

Instruction Register (IR)

Program Counter (PC)

© R.H. Katz Transparency No. 11-7

Contemporary Logic Design
Computer OrganizationStructure of a Computer

Control

Reset

Initialize

0

Control State Diagram Initialize
Machine

Fetch
I t

Control State Diagram

• Reset

F t h I t ti
Different Sequence
for Each Instruction

Instr.• Fetch Instruction

• Decode

Type
Branch

Load/
Store

Register-
to-Register

XEQ
Instr.

• Execute

Instructions partitioned

Incr.
PC

Branch
Not Taken

Branch

p
into three classes:

• Branch
PCTaken• Load/Store

• Register-to-Register
H k i

© R.H. Katz Transparency No. 11-8

Housekeeping

Contemporary Logic Design
Computer OrganizationStructure of a Computer

Datapath
Arithmetic Circuits

constructed in
hierarchical and
iterative fashion

Each bit in datapath
is functionally identical

4 bit4-bit
8-bit
16-bit
32-bit

Datapaths

© R.H. Katz Transparency No. 11-9

Hierarchical Construction of
Full Adder

Contemporary Logic Design
Computer OrganizationStructure of a Computer

Datapath

ALU CICO ALUCO ALU CI

AC AC AC

R0

R1

R0

R1

R0

R1

R2

R3

R2

R3

R2

R3R3

1 bit wide

R3 R3

2 bits wide

© R.H. Katz Transparency No. 11-10

Bit Slice Concept iterate to build n-bit wide
datapaths

Contemporary Logic Design
Computer OrganizationStructure of a Computer

Datapath

ALU Block Diagram

32 32

A B

ALU
Operation 32

Cout S

© R.H. Katz Transparency No. 11-11

Contemporary Logic Design
Computer OrganizationStructure of a Computer

Block Diagram/Register Transfer View

Single Accumulator
Machine

Store Path

Load PathMachine

AC := AC <op> Mem

AC

A B Memory

Control Flow
Data Flow

"single address
instructions"

AC implicit operand
ALU

N bits wide
M words

MAR
S

FSM
Memory
Address

S

PCIR
Opcode

Instruction Path

Memory Address RegisterArrowed Lines
represent dataflows

© R.H. Katz Transparency No. 11-12

Hold address during memory
accessesothers are control flows

Contemporary Logic Design
Computer OrganizationStructure of a Computer

Block Diagram/Register Transfer View

Placement of Data and Instructions in Memory:

• Data and instructions mixed in memory: Princeton Architecture Data and instructions mixed in memory: Princeton Architecture

• Data and instructions in separate memory: Harvard Architecture

Princeton architecture simpler to implement

Harvard architecture has certain performance advantages:

overlap instruction fetch with operand fetch

We assume the more common Princeton architecture throughout

© R.H. Katz Transparency No. 11-13

Contemporary Logic Design
Computer OrganizationStructure of a Computer

Block Diagram/Register Transfer View

Trace an instruction: AC := AC + Mem<address>

1. Instruction Fetch:1. Instruction Fetch:

Move PC to MAR

Initiate a memory read sequenceInitiate a memory read sequence

Move data from memory to IR

2. Instruction Decode:

Op code bits of IR are input to control FSM

Rest of IR bits encode the operand address

© R.H. Katz Transparency No. 11-14

Contemporary Logic Design
Computer OrganizationStructure of a Computer

Block Diagram/Register Transfer View

Trace an instruction: AC := AC + Mem<address>

3. Operand Fetch:3. Operand Fetch:

Move operand address from IR to MAR

Initiate a memory read sequenceInitiate a memory read sequence

4. Instruction Execute:

Data available on load path

Move data to ALU inputMove data to ALU input

Configure ALU to perform ADD operation

Move S result to ACMove S result to AC

5. Housekeeping:

© R.H. Katz Transparency No. 11-15

Increment PC to point at next instruction

Contemporary Logic Design
Computer OrganizationStructure of a Computer

Block Diagram/Register Transfer View

Control: Transfer data from one register to another
Assert appropriate control signals

Register transfer notation Register to Register moves

Ifetch: PC → MAR;
Memory Read;
Memory → IR;

-- move PC to MAR
-- assert Memory READ signal
-- load IR from Memory

Instruction Decode: IF IR<op code> = ADD_FROM_MEMORY
THEN

Instruction Execution: IR<addr> MAR; move operand addr to MARInstruction Execution: IR<addr> → MAR;
Memory Read;

Memory → ALU B;

-- move operand addr to MAR
-- assert Memory READ signal

-- gate Memory to ALU B
AC → ALU A;
ALU ADD;

ALU S → AC;

-- gate AC to ALU A
-- instruct ALU to perform ADD

-- gate ALU result to AC

Assert Control
Signal

© R.H. Katz Transparency No. 11-16

ALU S → AC;

PC+1;

gate ALU result to AC

-- increment PC

Contemporary Logic Design
Computer OrganizationStructure of a Computer

Memory Interface

More Realistic Block Diagram:

PCPC

IR
M
A
R

Issue memory request

Is it a read or a write? Memory

Request
Read/Write

Wait

Memory asks CPU to wait M
B
R

LD/ST Data

Instructions
R

Decouple memory system from
internal processor operation Memory Buffer Register

© R.H. Katz Transparency No. 11-17

Contemporary Logic Design
Computer OrganizationStructure of a Computer

Memory Interface

No common clock between CPU and memory

Follow asynchronous 4-cycle handshake request/wait (ack) protocol

1. Request Asserted Request

2. Wait Unasserted

3. Request Unasserted

Read/Write

Data To MemoryFrom Memory

4. Wait Asserted
Data

Wait

yy

Read Cycle Write Cycle

Memory cannot make request unless Wait signal is assertedy q g

Hi-to-Lo transition on Wait implies that data is ready (read)
or data has been latched by memory (write)

© R.H. Katz Transparency No. 11-18

Contemporary Logic Design
Computer OrganizationStructure of a Computer

Memory Interface

State Diagram Fragments for Read/Write Cycles

Read
C l

Write
Cycle

MAR → AddressBus;
0 → Read/Write;
1 → Request;

Wait
Wait

Cycle Cycle
MAR → AddressBus;
1 → Read/Write;
1 → Request;

MBR → DataBus;

WaitWait

MBR → DataBus;

Wait

Wait

0 → Request; Wait 0 → Request;

Wait
Wait

State 1: drive address bus
assert read request
catch data into MBR

Normal Convention:

If register transfer op
NOT asserted, it need

© R.H. Katz Transparency No. 11-19

State 2: unassert request
hold in state until Wait reasserted

NOT asserted, it need
not be mentioned in

state diagram

Contemporary Logic Design
Computer OrganizationStructure of a Computer

I/O Interface

Memory-Mapped I/O
I/O devices share the memory address space

Control registers manipulated just like memory word

Read/write register to initiate I/O operation

Polling
Programs periodically checks whether I/O has completedPrograms periodically checks whether I/O has completed

Interrupts
Device signals CPU when operation is complete

Software must take over to handle the data transfers from the device

Check for interrupt pending before fetching next instruction

Save PC & vector to special memory location for next instruction

© R.H. Katz Transparency No. 11-20

Instruction set includes a "return from interrupt" instruction

Contemporary Logic Design
Computer OrganizationBussing Strategies

Register-to-Register Coummunications

• Point-to-point

• Single shared bus

• Multiple special purpose busses

Tradeoffs between datapath/control complexity and
amount of parallelism supported by the hardware

Case study:

Four general purpose registers that must be able to exchange
their contents

Swap instruction must be supported:

SWAP(Ri, Rj)

Ri → Rj;

© R.H. Katz Transparency No. 11-21

Rj → Ri;

Contemporary Logic Design
Computer OrganizationBussing Schemes

Point-to-Point Connection Scheme

S1 1 0S0<1:0> MUX
S1<1:0>

MUX S2<1:0> MUX S3<1:0> MUX

LD1 R1LD0 R0 LD2 R2 LD3 R3

Four registers interconnected via 4:1 Mux's and point-to-point connections
• Edge-triggered N bit registers controlled by LDi signals

• N x 4:1 MUXes per register, controlled by Si<1:0> signals

© R.H. Katz Transparency No. 11-22

Contemporary Logic Design
Computer OrganizationBussing Schemes

Point-to-point Connections

Example:
Register transfers R1 → R0 and R2 → R3

Register transfer operations:

01 → S0<1:0>;

10 → S3<1:0>;

Enable path from R1 to R0

Enable path from R2 to R3

1 → LD0;

1 → LD3;

Assert load for R0

Assert load for R3

© R.H. Katz Transparency No. 11-23

Contemporary Logic Design
Computer OrganizationBussing Schemes

Point-to-point Connections
When control signals are asserted and when they take place:

Enter state X:Enter state X:
Multiplexor control signals asserted
R1 outputs arrive at R0 inputs
R2 outputs arrive at R3 inputsX

01 → S0<1:0>;
10 → S3<1:0>;

LD signals asserted
Do not take effect until next rising clock

1 → LD0;
1 → LD3;

On entering state Y:
LD signals are synchronous and take
effect at the same time as the state
transition!

Y

Moore Machine

transition!

Moore Machine
State Diagram

© R.H. Katz Transparency No. 11-24

Contemporary Logic Design
Computer OrganizationBussing Schemes

Point-to-point connections
Implementation of Register SWAP operation

SWAP(R1, R2):
01 S2<1:0>;01 → S2<1:0>;
10 → S1<1:0>;
1 → LD2;
1 → LD1;

Establish connection paths

Swap takes place at next state
t iti

;
transition

Point-to-Point Scheme Plusses and Minuses:
+ transfer a new value into each of the

four registers at same time
i t i l t d i i l+ register swap implemented in a single

control state

- 5 gates to implement 4:1 MUX5 gates to implement 4:1 MUX
32 bit wide datapath implies 32 x 5 x 4 registers
= 640 gates!
very expensive implementation

© R.H. Katz Transparency No. 11-25

Contemporary Logic Design
Computer OrganizationBussing Strategies

Single Bus Interconnection

S<1:0> MUX

Single Bus

LD0 R0 LD1 R1 LD2 R2 LD3 R3

• per register MUX block replaced by single block

• 25% hardware cost of previous alternative

• shared set of pathways is called a BUS

Single bus becomes a critical resource --
used by only one transfer at a time

© R.H. Katz Transparency No. 11-26

Contemporary Logic Design
Computer OrganizationBussing Strategies

Single Bus Interconnection
Example: R1 → R0 and R2 → R3

State X: (R1 → R0)

01 → S<1:0>;

1 → LD0;1 → LD0;

(R2 → R3)State Y:

10 → S<1:0>;

1 → LD3;

Datapath no longer supports two simultaneous transfers!
Thus two control states are required to perform the transfersq p

© R.H. Katz Transparency No. 11-27

Contemporary Logic Design
Computer OrganizationBussing Strategies

Single Bus Interconnection
SWAP Operation

A special TEMP register must be introduced ("Register 4")
MUX's become 5:1 rather than 4:1

State X: (R1 → R4) Three states are required rather than one!

001 → S<2:0>;

1 → LD4;

plus extra register and wider mux

State Y: (R2 → R1)
More control states because this datapath

supports less parallel activity

010 → S<2:0>;

1 → LD1;
Engineering choices made based on how
frequently multiple transfers take place at

the same time

State Z: (R4 → R2)

100 S<2 0>

the same time

© R.H. Katz Transparency No. 11-28

100 → S<2:0>

1 → LD2;

Contemporary Logic Design
Computer OrganizationBussing Strategies

Alternatives to Multiplexors

Tri-state buffers as an interconnection scheme

LD0 RO LD1 R1 LD2 R2 LD3 R3

S<1:0> D
E
C

Only one register's contents gated to shared bus at a time

© R.H. Katz Transparency No. 11-29

Contemporary Logic Design
Computer OrganizationBussing Strategies

Multiple Busses
Real datapaths are a compromise between the two extremes

Register Transfer BUS

Single Bus Design

Diagram
Memory
Address

Bus
Memory

Data BusM P I A
A

M g g
A
R

P
C

I
R

A
C

B
B
R

Register transfer operations:

PC → BUS
IR → BUS
AC → BUS

S

BUS → PC
BUS → IR
BUS → AC

S

AC → ALU A
("hardwired")

MBR → BUS
ALU Result → BUS

BUS → MBR
BUS → ALU B
BUS → MAR

© R.H. Katz Transparency No. 11-30

Contemporary Logic Design
Computer OrganizationBussing Strategies

Multiple Busses
Example Register Transfer for Single Bus Design

Instruction Interpretation for "ADD Mem[X]"

IR<operand address> → BUS;
BUS → MAR;

Fetch Operand
Cycle 1:

BUS → MAR;

Memory Read;
D t b MBR

Cycle 2:
Databus → MBR;

MBR → BUS;
Perform ADD
Cycle 3: ;

BUS → ALU B;
AC → ALU A;
ADD;

y

Requires latch
for ALU Result

ALU Result → BUS;
BUS → AC;

Write Result
Cycle 4:

© R.H. Katz Transparency No. 11-31

Contemporary Logic Design
Computer OrganizationBussing Strategies

Multiple Busses
Three Bus Design -- Supports more parallelism

Address Bus Result Bus

M
A P I

Memory
Address

Bus A
A

M
B

Memory
Data Bus

A
R C R C

B

B
R

Si l b l d b th b

Memory Bus

Single bus replaced by three busses:
Memory Bus (MBUS)
Result Bus (RBUS)
Add B (ABUS)Address Bus (ABUS)

© R.H. Katz Transparency No. 11-32

Contemporary Logic Design
Computer OrganizationBussing Strategies

Multiple Busses
Instruction Interpretation for "ADD Mem[X]"

IR<operand address> → ABUS;
Fetch Operand
Cycle 1: IR<operand address> → ABUS;

ABUS → MAR;

M R d

Cycle 1:

Cycle 2: Memory Read;
Databus → MBR;

Cycle 2:

Perform ADD Implemented
MBR → MBUS;
MBUS → ALU B;
AC → ALU A;
ADD;

Cycle 3:
Implemented

in three cycles
rather than four

ADD;

ALU Result → RBUS;
RBUS → AC;

Write Result

Advantage of separate ABUS:
l PC MAR ith i t ti ti

© R.H. Katz Transparency No. 11-33

overlap PC → MAR with instruction execution

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

State Diagram and Datapath Derivation

Processor Specification:

Instruction Format:
15 14 13 0

AddressInstruction Format:
Op

Code
00 = LD
01 = ST
10 = ADD
11 = BRN

Address

Load from memory: Mem[XXX] → AC;
Store to memory: AC → Mem[XXX];
Add f AC M [XXX] AC

11 = BRN

M I f

Add from memory: AC + Mem[XXX] → AC;
Branch if accumulator is negative: AC < 0 ⇒ XXX → PC;

Memory Interface: M
A
R

14

MemoryRequest

M
B 16

[0:2 -1]
<15:0>

14
q

Read/Write
Wait

© R.H. Katz Transparency No. 11-34

B
R

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath

First pass state diagram:

ResetReset

Instruction
Fetch

Operation
Decode

LD ST ADD BRN
O tiOperation
Execution

© R.H. Katz Transparency No. 11-35

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
Assume Synchronous Mealy Machine:

Transitions associated with arcs rather than states

Reset/0 → PC

Reset/

Reset/ RES

Reset State (State 0)
and Instruction Fetch

Sequence
Reset/
PC → MAR,
PC + 1 → PC

Wait/ IF0

On Reset:
zero the PC Wait/

Wait/
MAR → Memory,
1 → Read/WriteWait/

IF0
Mem Request unasserted
Mem asserts Wait signal

1 → Read/Write,
1 → Request1 → Read/Write,

1 → Request,
MAR → Memory Wait/Mem → MBR

IF1

y

Wait/

Wait/Mem → MBR

Wait/MBR → IR
IF2

© R.H. Katz Transparency No. 11-36

Wait/MBR → IR

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
Assume Synchronous Mealy Machine:

Transitions associated with arcs rather than states

Reset/0 → PC

R t/

Reset/ RES

Reset State (State 0)
and Instruction Fetch

Sequence
Reset/
PC → MAR,
PC + 1 → PC

Wait/ IF0

On Reset:
zero the PC Wait/

Wait/
MAR → Memory,
1 R d/W itWait/

IF0zero the PC
Mem Request unasserted
Mem asserts Wait signal

I t ti F t h 1 → Read/Write,
1 → Request

Wait/
1 → Read/Write,

1 → Request,
MAR → Memory W it/M MBR

IF1

Instruction Fetch:
issue read request
4 cycle handshake on Wait signal

MAR → Memory

Wait/

Wait/Mem → MBR

Wait/MBR IR
IF2

© R.H. Katz Transparency No. 11-37

Wait/MBR → IR

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
Assume Synchronous Mealy Machine:

Transitions associated with arcs rather than states

Reset/0 → PC

R t/

Reset/ RES

Reset State (State 0)
and Instruction Fetch

Sequence
Reset/
PC → MAR,
PC + 1 → PC

W it/
On Reset:

zero the PC Wait/
Wait/
MAR → Memory,
1 R d/W itWait/

IF0zero the PC
Mem Request unasserted
Mem asserts Wait signal

I t ti F t h 1 → Read/Write,
1 → Request

Wait/
1 → Read/Write,

1 → Request,
MAR → Memory W i /M MBR

IF1

Instruction Fetch:
issue read request
4 cycle handshake on Wait signal

MAR → Memory

Wait/

Wait/Mem → MBR

W it/MBR IR
IF2

© R.H. Katz Transparency No. 11-38

Wait/MBR → IR

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
Assume Synchronous Mealy Machine:

Transitions associated with arcs rather than states

Reset/0 → PC
Reset/ RES

Reset State (State 0)
and Instruction Fetch

Sequence
Reset/
PC → MAR,
PC + 1 → PC

W it/

q

On Reset:
zero the PC Wait/

Wait/
MAR → Memory,

W it/

IF0zero the PC
Mem Request unasserted
Mem asserts Wait signal

I t ti F t h 1 → Read/Write,
1 → Request

Wait/
1 → Read/Write,

1 → Request,
MAR → Memory

IF1

Instruction Fetch:
issue read request
4 cycle handshake on Wait signal

MAR → Memory

Wait/

Wait/Mem → MBR

W it/MBR IR
IF2Note: No explicit mention of the

busses being used to implement

© R.H. Katz Transparency No. 11-39

Wait/MBR → IR
g p

register transfers!

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
Assume Synchronous Mealy Machine:

Transitions associated with arcs rather than states

Reset State (State 0)
and Instruction Fetch

Sequence

Reset/0 → PC
Reset/ RESSequence

On Reset:

Reset/
PC → MAR,
PC + 1 → PC

zero the PC
Mem Request unasserted
Mem asserts Wait signal

Wait/
Wait/
MAR → Memory,

IF0

Instruction Fetch:
issue read request
4 cycle handshake on Wait signal

y,
1 → Read/Write,
1 → Request

Wait/
1 → Read/Write,

1 → Request, IF1

Note: No explicit mention of the
busses being used to implement

MAR → Memory

Wait/

Wait/Mem → MBR

IF2

© R.H. Katz Transparency No. 11-40

busses being used to implement
register transfers! Wait/MBR → IR

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
Operation Decode State

OD

IR<15:14>=00 01 10 11

LD0 ST0 AD0 BR0

Four Way Next State Branch based on opcode bits

© R.H. Katz Transparency No. 11-41

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
Execution Sequences

Load Sequence

IR<15:14>=00/
IR<13:0> → MAR

OD
like IFetch, except that
operand address comes
from IR and data should

Wait/

Wait/ LD0
be loaded into AC

MAR → Memory,
1 → Read/Write,
1 → Request

Wait/
1 → Read/Write,

1 R t LD1

Wait/Mem → MBR

1 → Request,
MAR → Memory

LD1

Wait/MBR → AC

Wait/ LD2

© R.H. Katz Transparency No. 11-42

RES

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath

OD

Execution Sequences

Load Sequence

IR<15:14>=00/
IR<13:0> → MAR

OD
like IFetch, except that
operand address comes
from IR and data should
be loaded into AC

Wait/
MAR M

Wait/ LD0
be loaded into AC

MAR → Memory,
1 → Read/Write,
1 → Request

Wait/
1 → Read/Write,

1 → Request, LD1

Wait/Mem → MBR

q ,
MAR → Memory

W it/ LD2

Wait/MBR → AC

Wait/ LD2

RES

© R.H. Katz Transparency No. 11-43

RES

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath

OD

Execution Sequences

Load Sequence

IR<15:14>=00/
IR<13:0> → MAR

OD
like IFetch, except that
operand address comes
from IR and data should
be loaded into AC

Wait/
MAR M

Wait/ LD0
be loaded into AC

MAR → Memory,
1 → Read/Write,
1 → Request

Wait/
1 → Read/Write,

1 → Request, LD1

Wait/Mem → MBR

q ,
MAR → Memory

W it/ LD2

Wait/MBR → AC

Wait/ LD2

RES

© R.H. Katz Transparency No. 11-44

RES

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
Execution Sequences

Load SequenceLoad Sequence

like IFetch, except that
operand address comes
from IR and data should

IR<15:14>=00/
IR<13 0> MAR

OD

from IR and data should
be loaded into AC

IR<13:0> → MAR

Wait/

Wait/ LD0

Wait/
MAR → Memory,
1 → Read/Write,
1 → Request

Wait/
1 → Read/Write, 1 → Request

Wait/Mem → MBR

1 → Request,
MAR → Memory

LD1

Wait/MBR → AC

Wait/ LD2

© R.H. Katz Transparency No. 11-45

RES

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
S E i S

OD

Store Execution Sequence

Memory write sequence

IR<15:14>=01/
IR<13:0> → MAR,
AC MBR

ODMemory write sequence

AC → MBR

Wait/
MAR → Memory

Wait/

Wait/

ST0

MAR → Memory,
MBR → Memory,
0 → Read/Write,
1 → Request

Wait/
0 → Read/Write,

1 → Request,
MAR → Memory, ST1 1 → Request

Wait/

MAR → Memory,
MBR → Memory

W it/

ST1

Wait/

Wait/ ST2

© R.H. Katz Transparency No. 11-46

RES

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
S E i S

OD

Store Execution Sequence

Memory write sequence

IR<15:14>=01/
IR<13:0> → MAR,
AC MBR

ODMemory write sequence

AC → MBR

Wait/
MAR → Memory

Wait/

Wait/

ST0

MAR → Memory,
MBR → Memory,
0 → Read/Write,
1 → Request

Wait/
0 → Read/Write,

1 → Request,
MAR → Memory, ST1 1 → Request

Wait/

MAR → Memory,
MBR → Memory

W it/

ST1

Wait/

Wait/ ST2

© R.H. Katz Transparency No. 11-47

RES

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
S E i S

OD

Store Execution Sequence

Memory write sequence

IR<15:14>=01/
IR<13:0> → MAR,
AC MBR

ODMemory write sequence

AC → MBR

Wait/
MAR → Memory

Wait/

Wait/

ST0

MAR → Memory,
MBR → Memory,
0 → Read/Write,
1 → Request

Wait/
0 → Read/Write,

1 → Request,
MAR → Memory, ST1 1 → Request

Wait/

MAR → Memory,
MBR → Memory

W it/

ST1

Wait/

Wait/ ST2

© R.H. Katz Transparency No. 11-48

RES

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
S E i SStore Execution Sequence

Memory write sequence ODMemory write sequence

IR<15:14>=01/
IR<13:0> → MAR,
AC MBR

OD

AC → MBR

Wait/
MAR → Memory

Wait/

Wait/

ST0

MAR → Memory,
MBR → Memory,
0 → Read/Write,
1 → Request

Wait/
0 → Read/Write,

1 → Request,
MAR → Memory, ST1 1 → Request

Wait/

MAR → Memory,
MBR → Memory

W it/

ST1

Wait/

Wait/ ST2

© R.H. Katz Transparency No. 11-49

RES

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
Add Execution Sequence

Similar to Load sequence

IR<15:14>=10/
IR<13:0> → MAR

OD
q

Add MBR, AC rather than
simply transfer MBR to AC

Wait/
Wait/ AD0

MAR → Memory,
1 → Read/Write,
1 → Request

Wait/
1 → Read/Write,

1 → Request AD1

Wait/Mem → MBR

1 → Request,
MAR → Memory

AD1

Wait/
MBR + AC → AC

Wait/ AD2

© R.H. Katz Transparency No. 11-50

RES

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
Add Execution Sequence

Similar to Load sequence

IR<15:14>=10/
IR<13:0> → MAR

OD
q

Add MBR, AC rather than
simply transfer MBR to AC

Wait/
Wait/ AD0

MAR → Memory,
1 → Read/Write,
1 → Request

Wait/
1 → Read/Write,

1 → Request AD1

Wait/Mem → MBR

1 → Request,
MAR → Memory

AD1

Wait/
MBR + AC → AC

Wait/ AD2

© R.H. Katz Transparency No. 11-51

RES

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
Add Execution Sequence

Similar to Load sequence

IR<15:14>=10/
IR<13:0> → MAR

OD
q

Add MBR, AC rather than
simply transfer MBR to AC

Wait/
Wait/ AD0

MAR → Memory,
1 → Read/Write,
1 → Request

Wait/
1 → Read/Write,

1 → Request AD1

Wait/Mem → MBR

1 → Request,
MAR → Memory

AD1

Wait/
MBR + AC → AC

Wait/ AD2

© R.H. Katz Transparency No. 11-52

RES

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
Add Execution Sequence

Similar to Load sequenceq
Add MBR, AC rather than
simply transfer MBR to AC IR<15:14>=10/

IR<13:0> → MAR

OD

Wait/
Wait/ AD0

MAR → Memory,
1 → Read/Write,
1 → Request

Wait/
1 → Read/Write,

1 → Request AD1

Wait/Mem → MBR

1 → Request,
MAR → Memory

AD1

Wait/
MBR + AC → AC

Wait/ AD2

© R.H. Katz Transparency No. 11-53

RES

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
B h E i SBranch Execution Sequence

IR<15:14> = 11/

OD

AC<15> = 1/

BR0

AC<15> = 0/
AC 15 1/

IR<13:0> → PC

RES

© R.H. Katz Transparency No. 11-54

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
B h E i SBranch Execution Sequence

IR<15:14> = 11/

OD

AC<15> = 1/

BR0

Replace PC with

AC<15> = 0/
AC<15> = 1/

IR<13:0> → PC

RESp
Operand Address if
AC < 0

Oth i d thiOtherwise, do nothing

© R.H. Katz Transparency No. 11-55

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
Revised/Complete State Diagram

ResetRES

Simplify Wait Looping

Eliminate some Wait states
Wait/

Wait/

IF0

Wait/

Wait/

Wait/IF1

IF2
At this point, Wait must be
asserted, so why loop on
Wait?

Wait/

Wait/

IF2

OD

Why loop on Wait when
resync will take place at
state IF0?

LD0 ST0 AD0 BR0

Wait/ Wait/ Wait/state IF0? LD1 ST1 AD1

LD2 AD2

Wait/

Wait/ Wait/ Wait/

© R.H. Katz Transparency No. 11-56

LD2 AD2

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Deriving the State Diagram and Datapath
State Machines Inputs and Outputs so far:

Inputs:
R t

Outputs:
Reset
Wait
IR<15:14>
AC<15>

0 → PC
PC + 1 → PC
PC → MAR
MAR → Memory Address BusMAR → Memory Address Bus
Memory Data Bus → MBR
MBR → Memory Data Bus
MBR → IR
MBR ACMBR → AC
AC → MBR
AC + MBR → AC
IR<13:0> → MAR
IR<13:0> → PC
1 → Read/Write
0 → Read/Write
1 → Request1 → Request

© R.H. Katz Transparency No. 11-57

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Processor Signal Flow

Reset Mem Mem

Memory

Read/Write

Reset Wait Addr
Bus

Mem
Data
Bus

Request
0 → PC
PC + 1 → PC
PC MAR

D
A
T

C
O PC → MAR

MAR → Memory Address Bus
Memory Data Bus → MBR
MBR → Memory Data Bus

T
A
P
A

O
N
T
R

MBR → IR
MBR → AC
AC → MBR
AC MBR AC

A
T
H

O
L

AC + MBR → AC
IR<13:0> → MAR
IR<13:0> → PC

IR<15 14>

© R.H. Katz Transparency No. 11-58

IR<15:14>
AC<15>

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Mapping onto Datapath Control

Specification so far is independent of bussing strategy

Implied transfers:Implied transfers:

Operand Fetch
IFetch Branch

Store
Add

Memory
Address

Bus

Memory
Data
Bus

Add

M
A P I

A
A M

Add

A
R C R

B
C B

R

This is the point-to-point connection scheme

Load
IFetch

This is the point-to-point connection scheme

© R.H. Katz Transparency No. 11-59

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Mapping onto Datapath Operations

Observe that instruction fetch and operand fetch take place at
different times

This implies that IR, PC, and MAR transfers can be implemented
by single bus (Address Bus)

Combine MBR, IR, ALU B, and AC connections (Memory Bus)

Combine ALU AC and MBR connections (Result Bus)Combine ALU, AC, and MBR connections (Result Bus)

Three bus architecture:
AC + MBR AC implemented in single stateAC + MBR → AC implemented in single state

© R.H. Katz Transparency No. 11-60

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Mapping onto Datapath Operations

Address Bus Result Bus

M
A P

C
I
R

A
C

A
M
B

Memory
Address

Bus

Memory
Data
Bus

R C R C
B

B
R

AC has two inputs, RBUS and MBUS

Memory Bus

AC has two inputs, RBUS and MBUS
(Other registers except MBR have single input and output)

Dual ported configuration is more complex

Better idea: reuse existing paths were possible
MBR → AC transfer implemented by PASS B ALU operation

© R.H. Katz Transparency No. 11-61

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Mapping onto Datapath Operations

Detailed implementation of register transfer operations

More detailed control operations are called microoperations

One register transfer operation = several microoperations

Some operations directly implemented by functional units:Some operations directly implemented by functional units:
e.g., ADD, Pass B, 0 → PC, PC + 1 → PC

Some operations require multiple control operations:

e.g., PC → MAR implemented as
PC → ABUS and ABUS → MAR

© R.H. Katz Transparency No. 11-62

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Mapping onto Datapath Operations

Address
Bus

MAR PC

LD

ABUS MAR

PC → ABUS
CLR CNT

0 PC PC + 1 PC

d I

PC implemented by
counter with COUNT

d CLEAR i t

ABUS → MAR 0 → PC PC + 1 → PC

Tri-state Control

Load Input and CLEAR inputs

© R.H. Katz Transparency No. 11-63

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Mapping onto Datapath Operations
Timing of State Changes and Microoperations

RES IF0 IF1
CLK

RReset

0 → PC
PC gets 0

Deferred til next
clock edge PC + 1 → PC

PC gets
PC + 1

Takes place
immediately PC → ABUS PC on

ABUS

Deferred til next
clock edge ABUS → MAR

MAR latches
ABUS

© R.H. Katz Transparency No. 11-64

ABUS

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Mapping onto Datapath Operations
Relationship between register transfer and microoperations:

Register Transfer Microoperations
0 PC 0 PC (d l d)0 → PC 0 → PC (delayed);
PC + 1 → PC PC + 1 → PC (delayed);
PC → MAR PC → ABUS (immediate),

ABUS MAR (d l d)ABUS → MAR (delayed);
MAR → Address Bus MAR → Address Bus (immediate);
Data Bus → MBR Data Bus → MBR (delayed);
MBR Data Bus MBR Data Bus (immediate);MBR → Data Bus MBR → Data Bus (immediate);
MBR → IR MBR → ABUS (immediate),

ABUS → IR (delayed);
MBR AC MBR MBUS (immediate)MBR → AC MBR → MBUS (immediate),

MBUS → ALU B (immediate),
ALU PASS B (immediate),
ALU Result RBUS (immediate)ALU Result → RBUS (immediate),
RBUS → AC (delayed);

© R.H. Katz Transparency No. 11-65

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Mapping onto Datapath Operations
Relationship between register transfer and microoperations:
Register Transfer Microoperations
AC → MBR AC → RBUS (immediate),

RBUS → MBR (delayed);
AC + MBR → AC AC → ALU A (immediate),

MBR → MBUS (immediate),
MBUS → ALU B (immediate),
ALU ADD (immediate),
ALU Result → RBUS (immediate),
RBUS → AC (delayed);

IR<13:0> → MAR IR → ABUS (immediate),
ABUS → IR (delayed);

IR 13 0 PC IR ABUS (i di t)IR<13:0> → PC IR → ABUS (immediate),
ABUS → PC (delayed);

1 → Read/Write Read (immediate);
0 R d/W it W it (i di t)0 → Read/Write Write (immediate);
1 → Request Request (immediate);

Special microoperations for AC → ALU and ALU Result → RBUS

© R.H. Katz Transparency No. 11-66

Special microoperations for AC → ALU and ALU Result → RBUS
not strictly necessary since these connections can be hardwired

Contemporary Logic Design
Computer OrganizationFinite State Machines for Simple CPUs

Mapping onto Datapath Operations
Revised microoperation signal flow

Memory

Read/Write

Reset Wait
Mem
Addr
Bus

Mem
Data
Bus

5 inputs

make sure that Reset and

Request
0 → PC
PC + 1 → PC
PC → ABUS C

O

D
A
T make sure that Reset and

Wait are synchronized

16 datapath control lines

ABUS → MAR
ABUS → PC
MAR → Memory Address Bus

IR → ABUS O
N
T
R
O

T
A
P
A 16 datapath control lines

2 memory control lines

Memory Data Bus → MBR
MBR → Memory Data Bus
MBR → MBUS
MBUS → IR

O
L

T
H

MBUS → ALUB
RBUS → AC
RBUS → MBR
ALU ADD
ALU PASS B

© R.H. Katz Transparency No. 11-67

ALU PASS B

IR<15:14>
AC<15>

Contemporary Logic Design
Computer OrganizationController Implementation

Chapter Summary

• Basic organization of the Von Neumann computer

Separation of processor and memorySeparation of processor and memory

• Datapath connectivity

• Control Unit Organization

Register transfer operation

© R.H. Katz Transparency No. 11-68

