
Contemporary Logic Design
Finite State Machine Design

Ch t #8 Fi it St t M hi D iChapter #8: Finite State Machine Design
Contemporary Logic DesignContemporary Logic Design

R d H K tRandy H. Katz
University of California, Berkeley

June 1993

© R.H. Katz Transparency No. 8-1

Contemporary Logic Design
Finite State Machine DesignMotivation

• Counters: Sequential Circuits where State = Output

G li t Fi it St t M hi• Generalizes to Finite State Machines:
Outputs are Function of State (and Inputs)
Next States are Functions of State and Inputs
Used to implement circuits that control other circuitsp
"Decision Making" logic

• Application of Sequential Logic Design Techniques• Application of Sequential Logic Design Techniques
Word Problems
Mapping into formal representations of FSM behavior
Case Studies

© R.H. Katz Transparency No. 8-2

Contemporary Logic Design
Finite State Machine DesignChapter Overview

Concept of the State Machine

• Partitioning into Datapath and Control

• When Inputs are Sampled and Outputs Asserted When Inputs are Sampled and Outputs Asserted

Basic Design Approach

• Six Step Design Process

Alternative State Machine Representations

• State Diagram, ASM Notation, VHDL, ABEL Description Language

Moore and Mealy Machines

• Definitions Implementation Examples• Definitions, Implementation Examples

Word Problems

© R.H. Katz Transparency No. 8-3

• Case Studies

Contemporary Logic Design
Finite State Machine DesignConcept of the State Machine

Computer Hardware = Datapath + Controlp p

Registers FSM generating sequences
Qualifiers

g
Combinational Functional

Units (e.g., ALU)
Busses

FSM generating sequences
of control signals

Instructs datapath what to
do nextControl

"Puppeteer who pulls the

Control

Control Puppeteer who pulls the
strings"

Control

State

Control
Signal
Outputs

Qualifiers
and
Inputs

"Puppet" Datapath

© R.H. Katz Transparency No. 8-4

Contemporary Logic Design
Finite State Machine DesignConcept of the State Machine

Example: Odd Parity Checker
Assert output whenever input bit stream has odd # of 1's

Even

Reset

0

Present State
Even
Even
Odd

Input
0
1
0

Next State
Even
Odd
Odd

Output
0
0
1Even

[0]

1 1

Odd
Odd

0
1

Odd
Even

1
1

Symbolic State Transition Table
Odd
[1]0

Output
0
0

Next State
0
1

Input
0
1

Present State
0
0

State
Diagram

0
1
1

1
1
0

1
0
1

0
1
1

E d d St t T iti T blEncoded State Transition Table

© R.H. Katz Transparency No. 8-5

Contemporary Logic Design
Finite State Machine DesignConcept of the State Machine

Example: Odd Parity Checker

Next State/Output Functions
NS = PS xor PI; OUT = PS

T Q

Q

Input

CLK

Output

D Q
Input

NS

R Q

\ResetR

Q

Q
CLK PS/Output

\Reset

D FF Implementation T FF Implementation

Clk

Input 1 0 0 1 1 0 1 0 1 1 1 0

Clk

Output 1 1 0 1 0 0 1 1 0 1 1 1

© R.H. Katz Transparency No. 8-6
Timing Behavior: Input 1 0 0 1 1 0 1 0 1 1 1 0

p

Contemporary Logic Design
Finite State Machine DesignConcept of State Machine

Timing:
Wh i t l d t t t t d t t t d?When are inputs sampled, next state computed, outputs asserted?

State Time: Time between clocking events

• Clocking event causes state/outputs to transition, based on inputs

• For set-up/hold time considerations:

Inputs should be stable before clocking eventInputs should be stable before clocking event

• After propagation delay, Next State entered, Outputs are stable

NOTE: Asynchronous signals take effect immediately
Synchronous signals take effect at the next clocking event

E.g., tri-state enable: effective immediately
sync. counter clear: effective at next clock event

© R.H. Katz Transparency No. 8-7

Contemporary Logic Design
Finite State Machine DesignConcept of State Machine

Example: Positive Edge Triggered Synchronous Systemp g gg y y

On rising edge, inputs sampled
outputs, next state computed

State T ime

After propagation delay, outputs and
next state are stable

O
Clock

Immediate Outputs:
affect datapath immediately
could cause inputs from datapath to changeInputs

Delayed Outputs:
take effect on next clock edge
propagation delays must exceed hold timesOutputs

© R.H. Katz Transparency No. 8-8

Contemporary Logic Design
Finite State Machine DesignConcept of the State Machine

Communicating State Machines
One machine's output is another machine's input

X

CLK

FSM 1 A A B

FSM 1 FSM 2

Y
1

X
 Y=0

Y=0
X=0

X=0

FSM 2

Y

C D D A
[1]

Y 0

Y=1

C
[0]

X=0

X=1

B
[0]

Y=1

Y=0 1
D
[1]X=0

X=1

Machines advance in lock step

[0]Y=0,1 [1]X=0

© R.H. Katz Transparency No. 8-9

Machines advance in lock step

Initial inputs/outputs: X = 0, Y = 0

Contemporary Logic Design
Finite State Machine DesignBasic Design Approach

Six Step Process

1. Understand the statement of the Specification

2. Obtain an abstract specification of the FSM

3. Perform a state mininimization3. Perform a state mininimization

4. Perform state assignment

5. Choose FF types to implement FSM state register

6. Implement the FSM

1, 2 covered now; 3, 4, 5 covered later;
4, 5 generalized from the counter design procedure

© R.H. Katz Transparency No. 8-10

Contemporary Logic Design
Finite State Machine DesignBasic Design Approach

Example: Vending Machine FSM

General Machine Concept:
deliver package of gum after 15 cents deposited

single coin slot for dimes, nickels

no change

Step 1. Understand the problem:
Draw a picture!

Block Diagram
Vending

N

D Open
Coin

Sensor Gum

p

Machine
FSM

D

Reset

Clk

pSensor Release
Mechanism

Clk

© R.H. Katz Transparency No. 8-11

Contemporary Logic Design
Finite State Machine DesignVending Machine Example

Step 2. Map into more suitable abstract representation

Tabulate typical input sequences:
three nickels

i k l dinickel, dime
dime, nickel
two dimes
two nickels, dime

Reset
S0

,

Draw state diagram:

Inputs: N D reset

N D

S1 S2Inputs: N, D, reset

Output: open N D N D

N

[open] [open] [open]

S3 S4 S5 S6

DN

[open]

S8

[open]

S7

D

© R.H. Katz Transparency No. 8-12

[open][open]

Contemporary Logic Design
Finite State Machine DesignVending Machine Example

Step 3: State Minimization

Reset
0¢

Present
State

0¢
D
0

N
0

Inputs Next
State

0¢

Output
Open

0
N

5¢
D

5¢

0
1
1
0

1
0
1
0

5¢
10¢
X
5¢

0
0
X
0

N

10¢
D

¢

10¢

0
1
1
0

1
0
1
0

¢
10¢
15¢
X

10¢

0
0
X
0N, D

[open]

15¢

10¢

15¢

0
0
1
1
X

0
1
0
1
X

10¢
15¢
15¢
X

15¢

0
0
0
X
1

reuse states
whenever
possible

Symbolic State Table

15¢ X X 15¢ 1

© R.H. Katz Transparency No. 8-13

Contemporary Logic Design
Finite State Machine DesignVending Machine Example

Step 4: State Encoding
Next State

D 1 D 0
0 0

Present State
Q 1 Q 0
0 0

D
0

N
0

Inputs Output
Open

0
0 1
1 0
 X X
0 1

0 1

0
1
1
0

1
0
1
0

0
0
X
00 1

1 0
1 1
X X
1 0

0 1

1 0

0
0
1
1
0

0
1
0
1
0

0
0
0
X
01 0

1 1
1 1
X X
1 1

1 0

1 1

0
0
1
1
0

0
1
0
1
0

0
0
0
X
11 1

1 1
1 1
X X

1 1 0
0
1
1

0
1
0
1

1
1
1
X

© R.H. Katz Transparency No. 8-14

Contemporary Logic Design
Finite State Machine DesignParity Checker Example

Step 5. Choose FFs for implementation

D FF easiest to use

Q1 Q0
D N

Q1 Q1 Q0
D N

Q1 Q1 Q0
D N

Q1
D N D N D N

NNN

D

NNN

DD

Q
Q 1
D D

K-map for OpenK-map for D0
K-map for D1

Q0 Q0 Q0

D1 = Q1 + D + Q0 N

D0 = N Q0 + Q0 N + Q1 N + Q1 DOPEN

CLK
D

R

Q

Q \ Q 1

\reset

\ Q

Q 0

Q 1 D

N

N

D 1

D0 N Q0 Q0 N Q1 N Q1 D

OPEN = Q1 Q0
CLK

OPEN

Q 0 D

R

Q

Q

\ Q 0

\ Q 0

Q 0

Q 1
N

\ N D 0

© R.H. Katz Transparency No. 8-15

8 Gates
R Q

\reset Q 1
D

N

Contemporary Logic Design
Finite State Machine DesignParity Checker Example

Step 5 Choosing FF for ImplementationStep 5. Choosing FF for Implementation
J-K FF

Next State

D 1 D 0
0 0
0 1

Present State
Q 1 Q 0
0 0

D
0
0

N
0
1

Inputs K 1

X
X

K 0

X
X

J 1

0
0

J 0

0
10 1

1 0
X X
0 1

0 1

0
1
1
0

1
0
1
0

X
X
X
X

X
X
X
0

0
1
X
0

1
0
X
X

1 0
1 1
X X
1 0

1 0

0
1
1
0

1
0
1
0

X
X
X
0

1
0
X
X

1
1
X
X

X
X
X
0

1 1
1 1
X X
1 1

1 1

0
0
1
1
0

0
1
0
1
0

0
0
X
0

X
X
X
0

X
X
X
X

1
1
X
X1 1

1 1
1 1
X X

1 1 0
0
1
1

0
1
0
1

0
0
0
X

0
0
0
X

X
X
X
X

X
X
X
X

© R.H. Katz Transparency No. 8-16

Remapped encoded state transition table

Contemporary Logic Design
Finite State Machine DesignVending Machine Example

Implementation:

J1 = D + Q0 N

K1 0

Q1 Q0
D N

Q1 Q1 Q0
D N

Q1

K1 = 0

J0 = Q0 N + Q1 D
D

N
D

N

K0 = Q1 NK-map for K1K-map for J1
Q0 Q0

Q1 Q0
D N

Q1 Q1 Q0
D N

Q1

Q 0 J Q Q 1

D

N

D
N

D
N

OPEN
Q 1

\ Q 0

N

K R Q \ Q 1
D

CLK

K-map for K0K-map for J0
Q0

D

Q0

D

1

J

K R

Q

Q

Q 0

\ Q 1 \ Q 0

D

N

CLK

© R.H. Katz Transparency No. 8-17

7 Gates\reset

Contemporary Logic Design
Finite State Machine DesignAlternative State Machine Representations

Why State Diagrams Are Not Enough

Not flexible enough for describing very complex finite state machines

Not suitable for gradual refinement of finite state machine

Do not obviously describe an algorithm: that is, well specified
sequence of actions based on input data

algorithm = sequencing + data manipulation

separation of control and data

Gradual shift towards program-like representations:

• Algorithmic State Machine (ASM) Notation

• Hardware Description Languages (e.g., VHDL) Hardware Description Languages (e.g., VHDL)

© R.H. Katz Transparency No. 8-18

Contemporary Logic Design
Finite State Machine DesignAlternative State Machine Representations

Algorithmic State Machine (ASM) Notation

Three Primitive Elements:

• State Box

• Decision Box

• Output Box

State
Entry Path

State Code Output Box

State Machine in one state
block per state time

State
Name

State Box

* ***

block per state time

Single Entry Point

U bi E it P th

ASM
Block

State
Output List

ConditionT F

Unambiguous Exit Path
for each combination
of inputs

Condition
Box

Conditional
Output List

Output
Box

Outputs asserted high (.H)
or low (.L); Immediate (I)
or delayed til next clock

Output List

Exits to
other ASM Blocks

© R.H. Katz Transparency No. 8-19

Contemporary Logic Design
Finite State Machine DesignAlternative State Machine Representations

ASM Notation
Condition Boxes:

Ordering has no effect on final outcome

Equivalent ASM charts:
A exits to B on (I0 • I1) else exit to C

A 010 A 010

F FI0

I1

T
F

I0

T

F

F

I1

I1

T

I0

T

© R.H. Katz Transparency No. 8-20

B C B C

Contemporary Logic Design
Finite State Machine DesignAlternative State Machine Representations

Example: Parity Checker

Nothing in output list implies Z not asserted

Input X, Output Z
Even 0

g p p

Z asserted in State Odd

Symbolic State Table:X F

Input
F

Present
State
Even

Next
State
Even

Output

Symbolic State Table:

Odd

X

1

T

F
T
F
T

Even
Even
Odd
Odd

Even
Odd
Odd
Even

—
—
A
A

Odd
H. Z

1

Present Next

Encoded State Table:X T F

Input
0
1
0

State
0
0
1

State
0
1
1

Output
0
0
1

Trace paths to derive
state transition tables

© R.H. Katz Transparency No. 8-21

0
1

1
1

1
0

1
1

Contemporary Logic Design
Finite State Machine DesignAlternative State Machine Representations

ASM Chart for Vending Machine

0¢ 00 10¢ 10

T T
D

T

N
F

F
D

T

N
F

F

N

T

N

T

15¢
H.Open

1 1 5¢ 01

Reset

T

F T N

F T

F

© R.H. Katz Transparency No. 8-22

D
F T

0¢

Contemporary Logic Design
Finite State Machine DesignAlternative State Machine Representations

Hardware Description Languages: VHDL
ENTITY parity checker ISENTITY parity_checker IS
PORT (
x, clk: IN BIT;
z: OUT BIT);

END parity_checker;

Interface Description

Architectural Bodyp y_ ;

ARCHITECTURE behavioral OF parity_checker IS
BEGIN
main: BLOCK (clk = ‘1’ and not clk’STABLE)

Architectural Body

TYPE state IS (Even, Odd);
SIGNAL state_register: state := Even;

BEGIN state even:

Guard Expression

_
BLOCK ((state_register = Even) AND GUARD)
BEGIN
state_register <= Odd WHEN x = ‘1’
ELSE Even

END BLOCK t tEND BLOCK state_even;

BEGIN state_odd:
BLOCK ((state_register = Odd) AND GUARD)
BEGIN

Determine New State

BEGIN
state_register <= Even WHEN x = ‘1’
ELSE Odd;

END BLOCK state_odd;

< ‘0’ WHEN t t i t E ELSE Determine Outputs

© R.H. Katz Transparency No. 8-23

z <= ‘0’ WHEN state_register = Even ELSE
‘1’ WHEN state_register = Odd;

END BLOCK main;
END behavioral;

Determine Outputs

Contemporary Logic Design
Finite State Machine DesignAlternative State Machine Representations

ABEL Hardware Description Language
module parity
title 'odd parity checker state machine'
u1 device 'p22v10';
"I t Pi

test_vectors ([clk, RESET, X] -> [SREG])
[0,1,.X.] -> [S0];
[.C.,0,1] -> [S1];
[.C.,0,1] -> [S0];"Input Pins

clk, X, RESET pin 1, 2, 3;
"Output Pins
Q, Z pin 21, 22;

[.C.,0,1] -> [S1];
[.C.,0,0] -> [S1];
[.C.,0,1] -> [S0];
[.C.,0,1] -> [S1];
[C 0 0] -> [S1];Q, p , ;

Q, Z istype 'pos,reg';
"State registers
SREG [Q Z]

[.C.,0,0] -> [S1];
[.C.,0,0] -> [S1];
[.C.,0,0] -> [S1];

end parity;
SREG = [Q, Z];
S0 = [0, 0]; " even number of 0's
S1 = [1, 1]; " odd number of 0's
equationsequations
[Q.ar, Z.ar] = RESET; "Reset to state S0

state_diagram SREG
state S0:
if h 1if X then S1
else S0;

state S1:
if X then S0
else S1;

© R.H. Katz Transparency No. 8-24

else S1;

Contemporary Logic Design
Finite State Machine DesignMoore and Mealy Machine Design Procedure

Definitions State

Moore Machine

Outputs are function
solely of the current

Combinational
Logic for

Next State

Register

Comb.
Logic for
Outputs

X
Inputs

i

solely of the current
state

Outputs change
h l ith

Clock

Next State
(Flip-flop
Inputs)

p

Z
Outputs

k

synchronously with
state changes

state
feedback

Mealy MachineCombinational
Logic for

X
Inputs

i Z
Outputs

k

Outputs depend on
state AND inputs

State

Logic for
Outputs and
Next State

Input change causes
an immediate output

change

State Register Clock Feedback

© R.H. Katz Transparency No. 8-25

Asynchronous signals

Contemporary Logic Design
Finite State Machine DesignMoore and Mealy Machines

State Diagram Equivalents

Reset/0
0¢

(N D + Reset)/0Moore
Machine Reset

0¢

N D + Reset Mealy
Machine

N/0

5¢

Reset/0 N

5¢

[0]
Reset

N/0

¢

10¢

D/0N D/0

N

10¢

D
[0]

N D

N+D/1

10¢
D/1

N D/0
N+D

15¢

10¢

[0]
D

N D

15¢

Reset/1
[1]

15¢

Reset

Outputs are associated
with State

Outputs are associated
with Transitions

© R.H. Katz Transparency No. 8-26

Contemporary Logic Design
Finite State Machine DesignMoore and Mealy Machines

States vs. Transitions
Mealy Machine typically has fewer states than Moore Machine

for same output sequence
0

0 0/0

Same I/O behavior 1

0

1

0
[0]

1/0

0

1
0/0

0

Different # of states
1

1

2

[0] 1/1

2

[1] 1

S0 00 S0 0

Equivalent
S1

IN

01 S1

IN

1
Equivalent
ASM Charts

IN

S2 10

IN

© R.H. Katz Transparency No. 8-27
IN

H.OUT H.OUT

Contemporary Logic Design
Finite State Machine DesignMoore and Mealy Machines

Timing Behavior of Moore Machines
Reverse engineer the following:

J Q

FFa

X A Input X
Output Z
State A, B = Z

J
C
K R

Q

Q
X

X A

\A\B

FFb

\Reset

CLK

J
C

Q

Q

FFb

X

X Z

\BK R QX

\Reset

\A
\B

Two Techniques for Reverse Engineering:

• Ad Hoc: Try input combinations to derive transition table

© R.H. Katz Transparency No. 8-28

 Ad Hoc: Try input combinations to derive transition table

• Formal: Derive transition by analyzing the circuit

Contemporary Logic Design
Finite State Machine DesignMoore and Mealy Machines

Ad Hoc Reverse Engineering
Behavior in response to input sequence 1 0 1 0 1 0:

100

X
Clk
AA
Z
\Reset

X = 1
AB = 00

X = 0
AB = 1 1

X = 1
AB = 1 1

X = 0
AB = 10

X = 1
AB = 10

X = 0
AB = 01

X = 0
AB = 00

Reset
AB = 00

Partially Derived

A
0

0

B
0

1

X
0
1
0

A+
?
1
0

B+
?
1
0

Z
0
0
1Partially Derived

State Transition
Table

0

1

1

1

0

1

0
1
0
1
0

0
?
1
0
1

0
?
0
1
1

1
1
0
0
1

© R.H. Katz Transparency No. 8-29

1 1 0
1

1
1

1
0

1
1

Contemporary Logic Design
Finite State Machine DesignMoore and Mealy Machines

Formal Reverse Engineering
Derive transition table from next state and output combinational

functions presented to the flipflops!

Ja = X
Jb = X

Ka = X • B
Kb = X xor A

Z = B

FF it ti ti f J K fli flFF excitation equations for J-K flipflop:
A+ = Ja • A + Ka • A = X • A + (X + B) • A
B+ = Jb • B + Kb • B = X • B + (X • A + X • A) • B

Next State K-Maps:

State 00, Input 0 -> State 00
State 01, Input 1 -> State 01

A+

B

© R.H. Katz Transparency No. 8-30

B+

Contemporary Logic Design
Finite State Machine DesignMoore and Mealy Machines

Complete ASM Chart for the Mystery Moore Machine

S 0 00 S 3 1 1

H. Z

X X
0 1 0

1

H. Z

S 1 01 S 2 10

1

X X
1 0 0 1

Note: All Outputs Associated With State Boxes
No Separate Output Boxes — Intrinsic in Moore Machines

© R.H. Katz Transparency No. 8-31

Contemporary Logic Design
Finite State Machine DesignMoore and Mealy Machines

Reverse Engineering a Mealy Machine

X

Clk
\ A

D

C

Q

Q

J
C
K

Q

Q

X A B

\ A
\ X \ B

DA
C R Q K R Q

\Reset \Reset

\ X

X
A

B
\ X DA

X

B

B Z

\ X

Input X, Output Z, State A, B

A

© R.H. Katz Transparency No. 8-32

State register consists of D FF and J-K FF

Contemporary Logic Design
Finite State Machine DesignMoore and Mealy Machine

Ad Hoc Method
Si l T f I S 101011Signal Trace of Input Sequence 101011:

Note glitchesX

100

Note glitches
in Z!

Outputs valid at

X

Clk

A
following falling

clock edgeB

Z

\Reset
Reset

AB =00
Z =0

X =1
AB =00

Z =0

X =0
AB =00

Z =0

X =1
AB =01

Z =0

X =1
AB =10

Z =1

X =0
AB =1 1

Z =1

X =1
AB =01

Z =0

\Reset

Partially completed

A
0

0

B
0

1

X
0
1
0

A+
0
0
?

B+
1
0
?

Z
0
0
?

y p
state transition table
based on the signal

trace

0

1

1

0

0
1
0
1

?
1
?
0

?
1
?
1

?
0
?
1

© R.H. Katz Transparency No. 8-33

1

1

1
0
1

0
1
?

1
0
?

1
1
?

Contemporary Logic Design
Finite State Machine DesignMoore and Mealy Machines

Formal Method

A+ = B • (A + X) = A • B + B • X

B+ = Jb • B + Kb • B = (A xor X) • B + X • B

= A • B • X + A • B • X + B • X

Z = A • X + B • X
Missing Transitions and Outputs:

State 01, Input 0 -> State 01, Output 1
State 10, Input 0 -> State 00, Output 0
St t 11 I t 1 > St t 11 O t t 1

A+
A+ State 11, Input 1 -> State 11, Output 1A+

B+

© R.H. Katz Transparency No. 8-34

Z
Z

Contemporary Logic Design
Finite State Machine DesignMoore and Mealy Machines

ASM Chart for Mystery Mealy Machine
S0 = 00, S1 = 01, S2 = 10, S3 = 11

S 0 00 S 2 10

X X

H. Z

0
1

0 1

H. Z S 1 01
H. Z

S 3 1 1

X X
1

0

0 1

NOTE: Some Outputs in Output Boxes as well as State Boxes

0

© R.H. Katz Transparency No. 8-35

p p
This is intrinsic in Mealy Machine implementation

Contemporary Logic Design
Finite State Machine DesignMoore and Mealy Machines

Synchronous Mealy Machine

Clock

Combinational
L i f

X
Inputs

i Z
Outputs

k
Logic for

Outputs and
Next State

p

State Register Clock state
feedbackfeedback

latched state AND outputs

© R.H. Katz Transparency No. 8-36

avoids glitchy outputs!

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Mapping English Language Description to Formal Specifications

Four Case Studies:

• Finite String Pattern Recognizer Finite String Pattern Recognizer

• Complex Counter with Decision Making

• Traffic Light Controller• Traffic Light Controller

• Digital Combination Lock

We will use state diagrams and ASM Charts

© R.H. Katz Transparency No. 8-37

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Finite String Pattern Recognizer
A finite string recognizer has one input (X) and one output (Z).
The output is asserted whenever the input sequence …010…
has been observed, as long as the sequence 100 has never been
seenseen.

Step 1. Understanding the problem statement

Sample input/output behavior:
X: 00101010010…
Z 00010101000Z: 00010101000…

X: 11011010010…
Z: 00000001000…

© R.H. Katz Transparency No. 8-38

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Finite String Recognizer

Step 2. Draw State Diagrams/ASM Charts for the strings that must be
recognized. I.e., 010 and 100.

Moore State Diagram
Reset signal places

S0
[0]

Reset

Reset signal places
FSM in S0S1

[0]
S4
[0]

S2
[0]

S5
[0]

L i St t

[]

S3

[]

S6
Outputs 1 Loops in State[1] [0]

© R.H. Katz Transparency No. 8-39

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Finite String Recognizer
Exit conditions from state S3: have recognized …010

if next input is 0 then have …0100!
if next input is 1 then have …0101 = …01 (state S2)

S0
[0]

Reset

[0]

S1
[0]

S4
[0][0]

S2

[0]

S5S2
[0]

S5
[0]

S3
[1]

S6
[0]

© R.H. Katz Transparency No. 8-40

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Finite String Recognizer

Exit conditions from S1: recognizes strings of form …0 (no 1 seen)
loop back to S1 if input is 0

Exit conditions from S4: recognizes strings of form 1 (no 0 seen)Exit conditions from S4: recognizes strings of form …1 (no 0 seen)
loop back to S4 if input is 1

S0 ResetS0
[0]

Reset

S1
[0]

S4
[0]

S2
[0]

S5
[0]

S3
[1]

S6
[0]

© R.H. Katz Transparency No. 8-41

[1] [0]

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Finite String Recognizer
S2 S5 ith i l t t itiS2, S5 with incomplete transitions

S2 = …01; If next input is 1, then string could be prefix of (01)1(00)
S4 handles just this case!j

S5 = …10; If next input is 1, then string could be prefix of (10)1(0)
S2 handles just this case!

S0
[0]

Reset

Final State Diagram
S1
[0]

S4
[0]

S2
[0]

S5
[0][0]

S3

[0]

S6

© R.H. Katz Transparency No. 8-42

S3
[1]

S6
[0]

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Finite String Recognizer

module string
title '010/100 string recognizer state machine

Josephine Engineer, Itty Bity Machines, Inc.'
u1 device 'p22v10';

state_diagram SREG
state S0: if X then S4 else S1;
state S1: if X then S2 else S1;
state S2: if X then S4 else S3;u1 device p22v10 ;

"Input Pins
clk, X, RESET pin 1, 2, 3;

state S2: if X then S4 else S3;
state S3: if X then S2 else S6;
state S4: if X then S4 else S5;
state S5: if X then S2 else S6;
state S6: goto S6;

"Output Pins
Q0, Q1, Q2, Z pin 19, 20, 21, 22;
Q0, Q1, Q2, Z istype 'pos,reg';

test_vectors ([clk, RESET, X] -> [Z]
[0,1,.X.] -> [0];
[.C.,0,0] -> [0];
[.C.,0,0] -> [0];

"State registers
SREG = [Q0, Q1, Q2, Z];
S0 = [0,0,0,0]; " Reset state
S1 = [0,0,1,0]; " strings of the form ...0

[.C.,0,0] > [0];
[.C.,0,1] -> [0];
[.C.,0,0] -> [1];
[.C.,0,1] -> [0];
[.C.,0,0] -> [1];
[C 0 1] > [0]S2 = [0,1,0,0]; " strings of the form ...01

S3 = [0,1,1,1]; " strings of the form ...010
S4 = [1,0,0,0]; " strings of the form ...1
S5 = [1,0,1,0]; " strings of the form ...10
S6 = [1 1 0 0]; " strings of the form 100

[.C.,0,1] -> [0];
[.C.,0,0] -> [1];
[.C.,0,0] -> [0];
[.C.,0,1] -> [0];
[.C.,0,0] -> [0];S6 [1,1,0,0]; strings of the form ...100

equations
[Q0.ar, Q1.ar, Q2.ar, Z.ar] = RESET; "Reset to S0

[, ,] [];
end string;

© R.H. Katz Transparency No. 8-43

ABEL Description

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Finite String Recognizer
Review of Process:

• Write down sample inputs and outputs to understand specification

• Write down sequences of states and transitions for the sequences
to be recognized

• Add missing transitions; reuse states as much as possible

• Verify I/O behavior of your state diagram to insure it functions
like the specification

© R.H. Katz Transparency No. 8-44

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Complex Counter
A sync. 3 bit counter has a mode control M. When M = 0, the counter
counts up in the binary sequence. When M = 1, the counter advances
through the Gray code sequence.

Binary: 000, 001, 010, 011, 100, 101, 110, 111
Gray: 000, 001, 011, 010, 110, 111, 101, 100

Valid I/O behavior:

Mode Input M Current State Next State (Z2 Z1 Z0)p
0
0
1
1

000
001
010
110

()
001
010
110
1111

1
0
0

110
111
101
110

111
101
110
111

© R.H. Katz Transparency No. 8-45

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Complex Counter
One state for each output combination
Add appropriate arcs for the mode control

S 0 000
ResetS0

[000]
S 1 001

H. Z 0

0 1

[000]

S1
[001]

M

S 3 01 1
H. Z 1
H. Z 0

H. Z 1

S 2 010

0 1

S2
[010]

M
M

S 6 1 10
S 100

0

1
0

1

S3
[011]

S4 H. Z 2
H. Z 1

H Z 2

S 4 100

M

H. Z 2

S 7 1 1 1

0

1

S4
[100]

S5
[101] H. Z 2

H. Z 1
H. Z 0

H. Z 2
H. Z 0

M

S 5 101

0 1

0 [101]

S6
[110]

© R.H. Katz Transparency No. 8-46

M
0 1

S7
[111]

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Complex Counter

module counter
title 'combination binary/gray code upcounter

Josephine Engineer, Itty Bity Machines, Inc.'
u1 device 'p22v10';u1 device p22v10 ;
"Input Pins
clk, M, RESET pin 1, 2, 3;

state_diagram SREG
state S0: goto S1;
state S1: if M then S3 else S2;
state S2: if M then S6 else S3;

"Output Pins
Z0, Z1, Z2 pin 19, 20, 21;
Z0, Z1, Z2 istype 'pos,reg';

state S3: if M then S2 else S4;
state S4: if M then S0 else S5;
state S5: if M then S4 else S6;
state S6: goto S7;
state S7: if M then S5 else S0;

"State registers
SREG = [Z0, Z1, Z2];
S0 = [0,0,0];
S1 = [0,0,1];

state S7: if M then S5 else S0;
test_vectors ([clk, RESET, M] -> [Z0, Z1, Z2])
[0,1,.X.] -> [0,0,0];
[.C.,0,0] -> [0,0,1];

S2 = [0,1,0];
S3 = [0,1,1];
S4 = [1,0,0];
S5 = [1,0,1];
S6 = [1 1 0];

[.C.,0,0] -> [0,1,0];
[.C.,0,1] -> [1,1,0];
[.C.,0,1] -> [1,1,1];
[.C.,0,1] -> [1,0,1];
[C 0 0] -> [1 1 0];S6 [1,1,0];

S7 = [1,1,1];
equations
[Z0.ar, Z1.ar, Z2.ar] = RESET; "Reset to state S0

[.C.,0,0] > [1,1,0];
[.C.,0,0] -> [1,1,1];

end counter;

© R.H. Katz Transparency No. 8-47

ABEL Description

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Traffic Light Controller

A busy highway is intersected by a little used farmroad. Detectors
C sense the presence of cars waiting on the farmroad. With no car
on farmroad, light remain green in highway direction. If vehicle on on farmroad, light remain green in highway direction. If vehicle on
farmroad, highway lights go from Green to Yellow to Red, allowing
the farmroad lights to become green. These stay green only as long
as a farmroad car is detected but never longer than a set interval.
When these are met farm lights transition from Green to Yellow toWhen these are met, farm lights transition from Green to Yellow to
Red, allowing highway to return to green. Even if farmroad vehicles
are waiting, highway gets at least a set interval as green.

A h i t l ti th t t h t ti lAssume you have an interval timer that generates a short time pulse
(TS) and a long time pulse (TL) in response to a set (ST) signal. TS
is to be used for timing yellow lights and TL for green lights.

© R.H. Katz Transparency No. 8-48

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Traffic Light Controller
Pi t f Hi h /F d I t tiPicture of Highway/Farmroad Intersection:

FarmroadFarmroad

HL
FL

C

Highway
FL

Hi hHighway

HL
FL

C

Farmroad

C

© R.H. Katz Transparency No. 8-49

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Traffic Light Controller
• Tabulation of Inputs and Outputs:

Input Signal
reset

Description
place FSM in initial statereset

C
TS
TL

place FSM in initial state
detect vehicle on farmroad
short time interval expired
long time interval expired

Output Signal
HG, HY, HR
FG, FY, FR

Description
assert green/yellow/red highway lights
assert green/yellow/red farmroad lights

ST start timing a short or long interval

• Tabulation of Unique States: Some light configuration imply others
State
S0
S1
S2

Description
Highway green (farmroad red)
Highway yellow (farmroad red)
Farmroad green (high a red)S2

S3
Farmroad green (highway red)
Farmroad yellow (highway red)

© R.H. Katz Transparency No. 8-50

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Traffic Light Controller
Refinement of ASM Chart:

Start with basic sequencing and outputs:

S 0 S 3

H.HG
H.FR

H.HR
H.FY

S 1 S 2

H.HR
H FG

H.HY
H FR H.FG H.FR

© R.H. Katz Transparency No. 8-51

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Traffic Light Controller
Determine Exit Conditions for S0:

Car waiting and Long Time Interval Expired- C • TL

S 0 S 0

H.HG
H.FR

H.HG
H.FR

TL TL • C 0

1

0

1

H.ST C 0
1

1

1

H.ST S 1

H.HY
H.FR

S 1

H.HY
H.FR

© R.H. Katz Transparency No. 8-52

Equivalent ASM Chart Fragments

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Traffic Light Controller
S1 to S2 Transition:

Set ST on exit from S0
Stay in S1 until TS asserted
Similar situation for S3 to S4 transitionSimilar situation for S3 to S4 transition

S 1

H HY H ST

S 2

H HRH.HY
H.FR

H.ST H.HR
H.FG

0 1
TS

0 1

© R.H. Katz Transparency No. 8-53

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Traffic Light Controller
S2 Exit Condition: no car waiting OR long time interval expired

S 0 S 3
H.HG
H.FR H.ST

H.HR
H.FY

TS TL • C 0 0 1

1

H.ST H.ST

1

S 1 S 2
H.HY
H.FR

H.ST H.HR
H.FG

TS TL + C
1 0

1

0

© R.H. Katz Transparency No. 8-54
Complete ASM Chart for Traffic Light Controller

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Traffic Light Controller
C i h diCompare with state diagram:

Reset
TL + C

S0: HG

S1: HY

Reset
S0

TL•C/ST

TS
TS/ST

S2: FG

S3: FY

TS
S1 S3

TS/ST TS

S2

TS/ST
TL + C/ST

TL • C

Advantages of State Charts:

TL • C

• Concentrates on paths and conditions for exiting a state

• Exit conditions built up incrementally, later combined into
single Boolean condition for exit

© R.H. Katz Transparency No. 8-55

single Boolean condition for exit

• Easier to understand the design as an algorithm

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Traffic Light Controller

module traffic
title 'traffic light FSM'
u1 device 'p22v10';

HY = !Q0 & Q1;
HR = (Q0 & !Q1) # (Q0 & Q1);
FG = Q0 & !Q1;
FY = Q0 & Q1;

"Input Pins
clk, C, RESET, TS, TL

pin 1, 2, 3, 4, 5;

FY = Q0 & Q1;
FR = (!Q0 & !Q1) # (!Q0 & Q1);

state_diagram SREG
state S0: if (TL & C) then S1 with ST = 1

"Output Pins
Q0, Q1, HG, HY, HR,
FG, FY, FR, ST

pin 14, 15, 16, 17, 18,
19 20 21 22;

else S0 with ST = 0
state S1: if TS then S2 with ST = 1

else S1 with ST = 0
state S2: if (TL # !C) then S3 with ST = 1

else S2 with ST = 019, 20, 21, 22;
Q0, Q1 istype 'pos,reg';
ST, HG, HY, HR,
FG, FY, FR istype 'pos,com';

else S2 with ST = 0
state S3: if TS then S0 with ST = 1

else S3 with ST = 0
test_vectors

"State registers
SREG = [Q0, Q1];
S0 = [0, 0];
S1 = [0 1];

_
([clk,RESET, C, TS, TL]->[SREG,HG,HY,HR,FG,FY,FR,ST])
[.X., 1,.X.,.X.,.X.]->[S0, 1, 0, 0, 0, 0, 1, 0];
[.C., 0, 0, 0, 0]->[S0, 1, 0, 0, 0, 0, 1, 0];
[.C., 0, 1, 0, 1]->[S1, 0, 1, 0, 0, 0, 1, 0];
[C 0 1 0 0] >[S1 0 1 0 0 0 1 0];S1 = [0, 1];

S2 = [1, 0];
S3 = [1, 1];
equations

[.C., 0, 1, 0, 0]->[S1, 0, 1, 0, 0, 0, 1, 0];
[.C., 0, 1, 1, 0]->[S2, 0, 0, 1, 1, 0, 0, 0];
[.C., 0, 1, 0, 0]->[S2, 0, 0, 1, 1, 0, 0, 0];
[.C., 0, 1, 0, 1]->[S3, 0, 0, 1, 0, 1, 0, 0];
[.C., 0, 1, 1, 0]->[S0, 1, 0, 0, 0, 0, 1, 0];

© R.H. Katz Transparency No. 8-56

[Q0.ar, Q1.ar] = RESET;
HG = !Q0 & !Q1;

end traffic;

ABEL Description

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Digital Combination Lock

"3 bit serial lock controls entry to locked room. Inputs are RESET,
ENTER, 2 position switch for bit of key data. Locks generates an
UNLOCK signal when key matches internal combination. ERRORg y
light illuminated if key does not match combination. Sequence is:
(1) Press RESET, (2) enter key bit, (3) Press ENTER, (4) repeat (2) &
(3) two more times."

Problem specification is incomplete:

• how do you set the internal combination?• how do you set the internal combination?

• exactly when is the ERROR light asserted?

Make reasonable assumptions:

• hardwired into next state logic vs. stored in internal register

• assert as soon as error is detected vs. wait until full combination
has been entered

© R.H. Katz Transparency No. 8-57

Our design: registered combination plus error after full combination

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Digital Combination Lock

Understanding the problem: draw a block diagram …

RESET

Operator Data UNLOCK ENTER

KEY -IN
Combination

Internal

ERROR
L 0

L

Combination
Lock FSM

Combination

O t t

L 1

L 2

Inputs:
Reset
Enter
Key-In

Outputs:
Unlock
Error

Key In
L0, L1, L2

© R.H. Katz Transparency No. 8-58

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Digital Combination Lock
Enumeration of states:

what sequences lead to opening the door?
error conditions on a second pass …error conditions on a second pass …

START state plus three key COMParison states

START entered on RESET

E it START h ENTER i d

ST ART

Exit START when ENTER is pressed
Reset 1

0

Enter

COMP0

0

0
1

Continue on if Key-In matches L0
N

© R.H. Katz Transparency No. 8-59

KI = L 0
N

Y

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Digital Combination Lock
COMP0 IDLE1

Path to unlock:
COMP0 IDLE1

N
KI = L 0

Y
IDLE0 COMP2

Enter 0

1

Wait for
Enter Key press

IDLE0

Enter

COMP1

N
KI = L 2

Y
DONE

0

1

N

H.Unlock

0Compare Key-IN N

Y

KI = L 1 Reset

1

0

© R.H. Katz Transparency No. 8-60

ST ART

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Digital Combination Lock

Now consider error paths

Should follow a similar sequence as UNLOCK path, except
asserting ERROR at the end:asserting ERROR at the end:

IDLE0' IDLE1' ERROR3

Enter Enter

H.Error

Reset0 0 0
Enter

ERROR1

Enter

ERROR2

Reset

START

1 1 1

COMP0 it t IDLE0'

ST ART

COMP0 error exits to IDLE0'

COMP1 error exits to IDLE1'

© R.H. Katz Transparency No. 8-61

COMP2 error exits to ERROR3

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Digital Combination Lock Reset
Reset + Enter

St t

Reset • Enter

Start

Comp0p
KI = L0 KI ° L0

EnterEnter
Idle0 Idle0'

Equivalent State Diagram

EnterEnter

Comp1 Error1

KI ° L1KI L1KI = L1
Enter

Enter

EnterEnter

Idle1 Idle1'

EnterEnter

Comp2 Error2

KI ° L2KI = L2

Done
[Unlock]

Error3
[Error]

Reset

Reset Reset

Reset

© R.H. Katz Transparency No. 8-62

StartStart

Contemporary Logic Design
Finite State Machine DesignFinite State Machine Word Problems

Combination Lock
module lock
title 'comb. lock FSM'
u1 device 'p22v10';

i

equations
[Q0.ar, Q1.ar, Q2.ar, Q3.ar] = RESET;
UNLOCK = !Q0 & Q1 & Q2 & !Q3;"asserted in DONE

0 ! 1 2 3 3"Input Pins
clk, RESET, ENTER, L0, L1, L2, KI
pin 1, 2, 3, 4, 5, 6, 7;
"Output Pins

ERROR = Q0 & !Q1 & Q2 & Q3; "asserted in ERROR3
state_diagram SREG
state START: if (RESET # !ENTER)

then START else COMP0;Output Pins
Q0, Q1, Q2, Q3, UNLOCK, ERROR
pin 16, 17, 18, 19, 14, 15;
Q0, Q1, Q2, Q3 istype 'pos,reg';

then START else COMP0;
state COMP0: if (KI == L0) then IDLE0 else IDLE0p;
state IDLE0: if (!ENTER) then IDLE0 else COMP1;
state COMP1: if (KI == L1) then IDLE1 else IDLE1p;
state IDLE1: if (!ENTER) then IDLE1 else COMP2;

UNLOCK, ERROR istype 'pos,com';
"State registers
SREG = [Q0, Q1, Q2, Q3];
START = [0 0 0 0];

state COMP2: if (KI == L2) then DONE else ERROR3;
state DONE: if (!RESET) then DONE else START;
state IDLE0p:if (!ENTER) then IDLE0p else ERROR1;
state ERROR1:goto IDLE1p;
state IDLE1p:if (!ENTER) then IDLE1p else ERROR2;START = [0, 0, 0, 0];

COMP0 = [0, 0, 0, 1];
IDLE0 = [0, 0, 1, 0];
COMP1 = [0, 0, 1, 1];
IDLE1 = [0, 1, 0, 0];

state IDLE1p:if (!ENTER) then IDLE1p else ERROR2;
state ERROR2:goto ERROR3;
state ERROR3:if (!RESET) then ERROR3 else START;
test_vectors

COMP2 = [0, 1, 0, 1];
DONE = [0, 1, 1, 0];
IDLE0p = [0, 1, 1, 1];
ERROR1 = [1, 0, 0, 0];
IDLE1p = [1 0 0 1];

_
end lock;

© R.H. Katz Transparency No. 8-63

IDLE1p = [1, 0, 0, 1];
ERROR2 = [1, 0, 1, 0];
ERROR3 = [1, 0, 1, 1];

Contemporary Logic Design
Finite State Machine DesignChapter Review

Basic Timing Behavior an FSMg

• when are inputs sampled, next state/outputs transition and stabilize

• Moore and Mealy (Async and Sync) machine organizationsy (y y) g
outputs = F(state) vs. outputs = F(state, inputs)

First Two Steps of the Six Step Procedure for FSM DesignFirst Two Steps of the Six Step Procedure for FSM Design

• understanding the problem

• abstract representation of the FSM abstract representation of the FSM

Abstract Representations of an FSM

• ASM Charts, Hardware Description Languages

Word ProblemsWord Problems

• understand I/O behavior; draw diagrams

• enumerate states for the "goal"; expand with error conditions

© R.H. Katz Transparency No. 8-64

• enumerate states for the goal ; expand with error conditions

• reuse states whenever possible

