
Contemporary Logic Design
Sequential Case Studies

Chapter #7: Sequential Logic Case StudiesChapter #7: Sequential Logic Case Studies
Contemporary Logic Design

Randy H. Katzy
University of California, Berkeley

June 1993June 1993

© R.H. Katz Transparency No. 7-1

Contemporary Logic Design
Sequential Case StudiesMotivation

Fli fl t i iti " k d" ti l i it• Flipflops: most primitive "packaged" sequential circuits

• More complex sequential building blocks:p q g

Storage registers, Shift registers, Counters
Available as components in the TTL Catalog

• How to represent and design simple sequential circuits: counters

• Problems and pitfalls when working with counters:

Start-up Statesp
Asynchronous vs. Synchronous logic

© R.H. Katz Transparency No. 7-2

Contemporary Logic Design
Sequential Case StudiesChapter Overview

Examine Real Sequential Logic Circuits Available as ComponentsExamine Real Sequential Logic Circuits Available as Components

• Registers for storage and shifting

• Random Access Memories Random Access Memories

• Counters

C t D i P dCounter Design Procedure
• Simple but useful finite state machine

State Diagram State Transition Table Next State Functions• State Diagram, State Transition Table, Next State Functions

• Excitation Tables for implementation with alternative flipflop types

Synchronous vs. Asynchronous Counters
• Ripple vs. Synchronous Counters

• Asynchronous vs. Synchronous Clears and Loads

© R.H. Katz Transparency No. 7-3

Contemporary Logic Design
Sequential Case StudiesKinds of Registers and Counters

Storage Register
Group of storage elements read/written as a unit

4-bit register constructed from 4 D FFs
Shared clock and clear lines

Schematic Shape

171
9

CLR
CLK Q3

Q3
Q2
Q2

11

10
9

6
7

2

13
12

Q1
D3
D2
D1
D0

Q1

Q0
Q0

11
5
4

3
2

14 15
1

TTL 74171 Quad D-type FF with Clear
(Small numbers represent pin #s on package)

© R.H. Katz Transparency No. 7-4

Contemporary Logic Design
Sequential Case StudiesKinds of Registers and Counters

Input/Output Variations
Selective Load Capability
Tri-state or Open Collector Outputs
True and Complementary Outputs

377

EN
CLK

1
11

H QH

374
11
18 19

CLK

D6
Q5

EN

Q6
Q7

D5

D7

1

14
17
18

12
15
16
19

H
G
F
E
D

QH
QG
QF
QE
QD8

13
14
17
18

9
12
15
16
19

D3
Q2
Q1

Q3
Q4

D2
D1

D4

4
7
8

13

5
6
9
12 D

C
B
A

QD
QC
QB
QA

O
3
4
7
8

2
5
6
9

74377 Octal D-type FFs
ith i t bl

74374 Octal D-type FFs

Q
Q0D03 2 OE

1

with input enable with output enable
EN enabled low and

lo-to-hi clock transition
to load new data into

OE asserted low
presents FF state to

o tp t pins other ise

© R.H. Katz Transparency No. 7-5

to load new data into
register

output pins; otherwise
high impedence

Contemporary Logic Design
Sequential Case StudiesKinds of Registers and Counters

Register Files
Two dimensional array of flipflops
Address used as index to a particular word
Word contents read or written

Separate Read and Write Enables
S t R d d W it Add

670
RE
RB4

11

Separate Read and Write Address
Data Input, Q Outputs

WE
WB

RA
RB

5
4

14
13

12

Contains 16 D-ffs, organized as
four rows (words) of four elements (bits)Q4D4

D3
D2

Q3
Q2

WA14

1
2
3

9
7
6

74670 4x4 Register File with
T i t t O t t

D1
D2 Q2

Q115
1

10
9

Tri-state Outputs

© R.H. Katz Transparency No. 7-6

Contemporary Logic Design
Sequential Case StudiesKinds of Registers and Counters

Shift Registers
Storage + ability to circulate data among storage elements

Shift Direction\Reset Q 1 Q 2 Q 3 Q 4

CLK CLK CLK CLK

1

0

0

1

0

0

0

0

Shift

Shift

\Reset
Shift

0

0

0

0

1

0

0

1

Shift

Shift

Shift from left storage g
element to right neighbor
on every lo-to-hi transition
on shift signal

Wrap around from rightmost
element to leftmost element

Master Slave FFs: sample inputs while

© R.H. Katz Transparency No. 7-7

p p
clock is high; change outputs on
falling edge

Contemporary Logic Design
Sequential Case StudiesKinds of Registers and Counters

Shift Register I/O
Serial vs. Parallel Inputs
Serial vs. Parallel Outputs
Shift Direction: Left vs. Right

Serial Inputs: LSI, RSI
Parallel Inputs: D, C, B, A
Parallel Outputs: QD, QC, QB, QA
Clear Signal
Positive Edge Triggered Devices

S1,S0 determine the shift function
S1 = 1, S0 = 1: Load on rising clk edge

synchronous load
S1 = 1 S0 = 0: shift left on rising clk edge

74194 4-bit Universal
Shift Register

S1 = 1, S0 = 0: shift left on rising clk edge
LSI replaces element D

S1 = 0, S0 = 1: shift right on rising clk edge
RSI replaces element AShift Register S1 = 0, S0 = 0: hold state

Multiplexing logic on input to each FF!

© R.H. Katz Transparency No. 7-8

Shifters well suited for serial-to-parallel conversions,
such as terminal to computer communications

Contemporary Logic Design
Sequential Case StudiesKinds of Registers and Counters

Shift Register Application: Parallel to Serial Conversion

S1
S0

Sender
S1
S0

Receiver

194 194

QA
QB
QC
QD

LSI
D
C
B
A

D7
D6
D5
D4 QA

QB
QC
QD

LSI
D
C
B
A
RSI

D7
D6
D5
D4

RSI
CLK
CLR

S1

RSI
CLK

CLR

S1

Clock

Parallel
Inputs

Parallel
Outputs

QB
QC
QD

S1
S0
LSI
D
C
B

D3
D2
D1 QB

QC
QD

S1
S0
LSI
D
C
B

D3
D2
D1

194194

QA
QB

A
RSI
CLK
CLR

D0 QA
QB

A
RSI
CLK

CLR

D0

Serial
transmission

© R.H. Katz Transparency No. 7-9

Contemporary Logic Design
Sequential Case StudiesKinds of Registers and Counters

Counters
Proceed through a well defined sequence of states in response toProceed through a well-defined sequence of states in response to

count signal

3 Bit Up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...

3 Bit Down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

Binary vs. BCD vs. Gray Code CountersBinary vs. BCD vs. Gray Code Counters

A counter is a "degenerate" finite state machine/sequential circuit
where the state is the only output

© R.H. Katz Transparency No. 7-10

Contemporary Logic Design
Sequential Case StudiesKinds of Registers and Counters

Johnson (Mobius) Counter
+ + +

0
1 \Reset

End-AroundJ
CLK
K

S

R

Q

Q

0

Q 1 Q 2 Q 3 Q 4 J

K

S

R

Q

Q

J

K

S

R

Q

Q

J

K

S

R

Q

Q
CLK CLK CLK

Shift

+

100

1

0

1

1

1

1

1

1

0

1

0

0

0

0

0

0

Shift

Q 1

0

0

0

1

0

0

1

1

0

1

1

1

1

1

1

0

1

1

0

0

1

0

0

0

Q 2

Q 3

Q 4

© R.H. Katz Transparency No. 7-11

8 possible states, single bit change per state, useful for avoiding glitches

Contemporary Logic Design
Sequential Case StudiesKinds of Registers and Counters

Catalog Counter

Synchronous Load and Clear Inputs
163

RCO

P
T

CLK2

7
10

15 y p

Positive Edge Triggered FFs

Parallel Load Data from D C B AQB
QC
QD

B
C
D

CLK

3
4
5
6

14

12
11

13
Parallel Load Data from D, C, B, A

P, T Enable Inputs: both must be asserted to
enable counting

QAA

LOAD

CLR

9

1

3 14

74163 Synchronous
4-Bit Upcounter

RCO: asserted when counter enters its highest
state 1111, used for cascading counters
"Ripple Carry Output"pp y p

74161: similar in function, asynchronous load and reset74161: similar in function, asynchronous load and reset

© R.H. Katz Transparency No. 7-12

Contemporary Logic Design
Sequential Case StudiesKinds of Registers and Counters

74163 Detailed Timing Diagram

LOAD

CLR

A

B

C

D

CLK

P

TT

Q A

Q B

Q C

Q D

© R.H. Katz Transparency No. 7-13

RCO
12 13 14 15 0 1 2

Clear Load Count Inhibit

Contemporary Logic Design
Sequential Case StudiesCounter Design Procedure

Introduction
Thi d b li d t i l t ANY fi it t tThis procedure can be generalized to implement ANY finite state

machine

Counters are a very simple way to start:y p y
no decisions on what state to advance to next
current state is the output

Example: 3 bit Binary UpcounterExample: 3-bit Binary Upcounter

Decide to implement with
T l Fli fl

Present
State

Next
State

Flipflop
Inputs

Toggle Flipflops

What inputs must be
presented to the T FFsp
to get them to change

to the desired state bit?

This is called

State Transition
Table

Flipflop
Input Table

This is called
"Remapping the Next

State Function"

© R.H. Katz Transparency No. 7-14

Table Input Table

Contemporary Logic Design
Sequential Case StudiesCounter Design Procedure

Introduction
Thi d b li d t i l t ANY fi it t tThis procedure can be generalized to implement ANY finite state

machine

Counters are a very simple way to start:y p y
no decisions on what state to advance to next
current state is the output

Example: 3 bit Binary UpcounterExample: 3-bit Binary Upcounter

Decide to implement with
T l Fli fl

Present
State

Next
State

Flipflop
Inputs

Present
State

Next
State

Flipflop
Inputs

Toggle Flipflops

What inputs must be
presented to the T FFsp
to get them to change

to the desired state bit?

This is called

State Transition
Table

Flipflop
Input Table

This is called
"Remapping the Next

State Function"

© R.H. Katz Transparency No. 7-15

Table Input Table

Contemporary Logic Design
Sequential Case StudiesCounter Design Procedure

Example Continued

K-maps for Toggle
Inputs:

Resulting Logic Circuit:

CB
00 01 11 10A

0

11

TA =
CB

00 01 11 10A

0

11

TB =

CBCB
00 01 11 10A

0

1

© R.H. Katz Transparency No. 7-16

1

TC =

Contemporary Logic Design
Sequential Case StudiesCounter Design Procedure

Example Continued

K-maps for Toggle
Inputs:

Resulting Logic Circuit:

CB
C

+

A 00 01 11 10

0

1

1 1 1 1

1 1 1 1
T QS QA T QS QB T QS QC

T A = 1
B

CB C

T

CLK

\Reset

Q

Q
R

T

CLK

Q

Q
R

T
CLK

Q

Q
R

100
Timing Diagram:

CB
A 00 01 11 10

0

1

0 0 0 0

1 1 1 1

Count

\Reset

Q

100

TB = A

1

B

1 1 1 1

C Q C

Q B

Q A

CB
A

C

00 01 11 10

0

1

0 0 0 0

0 1 1 0

© R.H. Katz Transparency No. 7-17

Count

TC = A • B
B

1 0 1 1 0

Contemporary Logic Design
Sequential Case StudiesCounter Design Procedure

More Complex Count Sequence

Step 1: Derive the State Transition Diagram
Count sequence: 000, 010, 011, 101, 110

St 2 St t T iti T bl

Present
State

Next
State

Step 2: State Transition Table

© R.H. Katz Transparency No. 7-18

Contemporary Logic Design
Sequential Case StudiesCounter Design Procedure

More Complex Count Sequence

Step 1: Derive the State Transition Diagram
Count sequence: 000, 010, 011, 101, 110

St 2 St t T iti T bl

Present
State

Next
State

Step 2: State Transition Table

Note the Don't Care conditions

© R.H. Katz Transparency No. 7-19

Note the Don t Care conditions

Contemporary Logic Design
Sequential Case StudiesCounter Design Procedure

More Complex Count Sequence

Step 3: K-Maps for Next State Functions

C+ B+

A+

© R.H. Katz Transparency No. 7-21

Contemporary Logic Design
Sequential Case StudiesCounter Design Procedure

More Complex Count Sequence

Step 3: K-Maps for Next State Functions

C+ B+

A+

© R.H. Katz Transparency No. 7-22

Contemporary Logic Design
Sequential Case StudiesCounter Design Procedure

More Complex Counter Sequencing

Step 4: Choose Flipflop Type for Implementation
Use Excitation Table to Remap Next State Functions

Present
State

Toggle
Inputs

Toggle Excitation
Table

Remapped Next Statepp
Functions

© R.H. Katz Transparency No. 7-23

Contemporary Logic Design
Sequential Case StudiesCounter Design Procedure

More Complex Counter Sequencing

Step 4: Choose Flipflop Type for Implementation
Use Excitation Table to Remap Next State Functions

Present
State

Toggle
Inputs

Toggle Excitation
Table

Remapped Next State
Functions

© R.H. Katz Transparency No. 7-24

Contemporary Logic Design
Sequential Case StudiesCounter Design Procedure

More Complex CounterSequencing

Remapped K-Maps

TC TB

TA

TC = A C + A C = A xor C

TB = A + B + C

© R.H. Katz Transparency No. 7-26

TA = A B C + B C

Contemporary Logic Design
Sequential Case StudiesCounter Design Procedure

More Complex Counter Sequencing

Resulting Logic:
5 Gates
13 Input Literals +

Flipflop connections
TC T

CLK

Q
Q

S

R
Count

T

CLK

Q
Q

S

R

TBC

\C

B A

\B \A

TA T

CLK

Q

Q

S

R

\Reset

TCA
C

\A
B
\C

Timing Waveform:
TB

TAA

C
\B \B

C

100

Count

\
0

0

0

0

0

1

0

1

1

0

1

1

0

0

\Reset

C

B

© R.H. Katz Transparency No. 7-27

0 0 0 1 1 0 0 A

Contemporary Logic Design
Sequential Case StudiesSelf-Starting Counters

Start-Up States

At power-up, counter may be in possible state

Designer must guarantee that it (eventually) enters a valid state

Especially a problem for counters that validly use a subset of states

Self-Starting Solution:
Design counter so that even the invalid states

eventually transition to valid state

Implementation
in Previousin Previous

Slide!

© R.H. Katz Transparency No. 7-28

Two Self-Starting State Transition Diagrams
for the Example Counter

Contemporary Logic Design
Sequential Case StudiesSelf-Starting Counters

Deriving State Transition Table from Don't Care Assignment

Inputs to Toggle Flip-flops State Changes

Present
State

Next
State

State Transition TableTC C+

C+
0
1
0

B+
1
1
1

A+
0
1
1

C
0
0
0

B
0
0
1

A
0
1
0

1
0
1
0
1

0
1
1
0
0

1
1
0
0
1

0
1
1
1
1

1
0
0
1
1

1
0
1
0
1

TB B+

1 0 11 1 1

TA A+

© R.H. Katz Transparency No. 7-29

Contemporary Logic Design
Sequential Case StudiesImplementation with Different Kinds of FFs

R-S Flipflops
Continuing with the 000, 010, 011, 101, 110, 000, ... counter example

Present
State

Next
State Remapped Next State

RS E it ti T bl
Q+ = S + R QQ+ = S + R Q

RS Exitation Table

Remapped Next State FunctionsRemapped Next State Functions

© R.H. Katz Transparency No. 7-30

Contemporary Logic Design
Sequential Case StudiesImplementation with Different Kinds of FFs

RS FFs Continued

CB
00 01 11 10A

0

CB
00 01 11 10A

0

RC =
1

RC

1

SC
SC =

RB =

CB
00 01 11 10A

0

CB
00 01 11 10A

0

SB =

RA =

1

RB

1

SB

SA =CB
00 01 11 10A

0

CB
00 01 11 10A

00

1

RA

0

1

SA

© R.H. Katz Transparency No. 7-32

RA SA

Contemporary Logic Design
Sequential Case StudiesImplementation with Different Kinds of FFs

RS FFs Continued

SC

RC = A

RC SC

SC = A

RB = A B + B C
RB SB

SB = B

RA = C

RB SB

SA = B C

RA SARA SA

© R.H. Katz Transparency No. 7-33

Contemporary Logic Design
Sequential Case StudiesImplementation With Different Kinds of FFs

RS FFs Continued

CLK CLK CLK
\ A R

C
Q RB R Q

B C R A Q
C C C
S A

\ C
Q \ B S Q

\ B
SA S

\A
Q

Count

A

B

A
C B

\C
RB SA

Resulting Logic Level Implementation:
3 Gates, 11 Input Literals + Flipflop connections

© R.H. Katz Transparency No. 7-34

Contemporary Logic Design
Sequential Case StudiesImplementation with Different FF Types

J-K FFs

Present
State

Next
State Remapped Next State

Q+ = J Q + K Q
J-K Excitation Table

Remapped Next State Functions

© R.H. Katz Transparency No. 7-35

Contemporary Logic Design
Sequential Case StudiesImplementation with Different FF Types

J-K FFs Continued

CB
00 01 11 10A

0

CB
00 01 11 10A

0

JC =
1

JC

1

KC
KC =

JB =
CB

00 01 11 10A

0

CB
00 01 11 10A

0
KB =

JA =
1

JB

1

KB
KA = CB

00 01 11 10A

0

CB
00 01 11 10A

00

1

JA

0

1

KA

© R.H. Katz Transparency No. 7-37

JA KA

Contemporary Logic Design
Sequential Case StudiesImplementation with Different FF Types

J-K FFs Continued

JC = A

KC A

JC KCJC KC

KC = A

JB = 1
JB KBJB KB

KB = A + C

JA = B C

JB KBJB KB

KA = C

JA KAJA KA

© R.H. Katz Transparency No. 7-38

Contemporary Logic Design
Sequential Case StudiesImplementation with Different FF Types

J-K FFs Continued
+

CLK CLK CLK
J

K

Q

Q

A

\ A

C

\ C KB

J

K

Q

Q

B

\ B

J

K

Q

Q

JA

C

A

\ A\ C \ B \ A
Count

B
\ C

A
C KB JA

Resulting Logic Level Implementation:
2 Gates, 10 Input Literals + Flipflop Connections

© R.H. Katz Transparency No. 7-39

Contemporary Logic Design
Sequential Case StudiesImplementation with Different FF Types

D FFs
Simplest Design Procedure: No remapping needed!

DC = A

DB = A C + B

DA = B C

D Q A D Q DA DB B D Q A C

CLK CLK Q \ A Q \ B CLK Q \ C
Count

\ C
\ A B DADB

Resulting Logic Level Implementation:

\ A
\ B

B
\ C DA DB

© R.H. Katz Transparency No. 7-40

Resulting Logic Level Implementation:
3 Gates, 8 Input Literals + Flipflop connections

Contemporary Logic Design
Sequential Case StudiesImplementation with Different FF Types

Comparison
• T FFs well suited for straightforward binary counters

But yielded worst gate and literal count for this example!

• No reason to choose R-S over J-K FFs: it is a proper subset of J-K

R S FF d 't ll i tR-S FFs don't really exist anyway

J-K FFs yielded lowest gate count

Tend to yield best choice for packaged logic where gate count is key

• D FFs yield simplest design procedure• D FFs yield simplest design procedure

Best literal count

D t d i t i t ffi i t i VLSID storage devices very transistor efficient in VLSI

Best choice where area/literal count is the key

© R.H. Katz Transparency No. 7-41

Contemporary Logic Design
Sequential Case StudiesAsynchronous vs. Synchronous Counters

Ripple Counters
Deceptively attractive alternative to synchronous design style

T Q

Q
A

T Q

Q
B

T

CLK

Q

Q
C

CLK CLK

Count signal ripples from left to right
Count

Q Q CLK QCLK CLK

State transitions are not sharp!
Can lead to "spiked outputs" from combinational logic

© R.H. Katz Transparency No. 7-42

Can lead to spiked outputs from combinational logic
decoding the counter's state

Contemporary Logic Design
Sequential Case StudiesAsynchronous vs. Synchronous Counters

Cascaded Synchronous Counters with Ripple Carry Outputs

Fi t t RCOFirst stage RCO
enables second stage

for counting

RCO asserted
soon after stage
enters state 1111(2) RCO goes high

also a function
of the T Enable

Downstream stages
(3) High order 4-bits

are incremented Downstream stages
lag in their 1111 to
0000 transitions

are incremented

© R.H. Katz Transparency No. 7-43

Affects Count period
and decoding logic (1) Low order 4-bits = 1111

Contemporary Logic Design
Sequential Case StudiesAsynchronous vs. Synchronous Counters

The Power of Synchronous Clear and Load
S i Off C

100

Starting Offset Counters:
e.g., 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1111, 0110, ...

Clock

Load

D C B A

D

C

B

L
O
A

C
L

C
L

R
C
O

Q
A

Q
B

Q
C

Q
D1

6
3

A D C B A
A
D

L
RKP T

Use RCO signal to trigger Load of a new state
0110

Load 0 1++

Since 74163 Load is synchronous, state changes
only on the next rising clock edge

0110
is the state

to be loaded

© R.H. Katz Transparency No. 7-44

Contemporary Logic Design
Sequential Case StudiesAsynchronous vs. Synchronous Counters

Offset Counters Continued
Ending Offset Counter:

e.g., 0000, 0001, 0010, ..., 1100, 1101, 0000

CLR

D C B A

Clear signal takes effect on the rising count edge

C
L
O C

L

1
6
3

R
C
O

Q Q Q Q
D C B A

D C B A
L
R

A
D

L
KP T

3 O

Decode state to

1
0

© R.H. Katz Transparency No. 7-45

Decode state to
determine when to

reset to 0000
Replace '163 with '161, Counter with Async Clear

Clear takes effect immediately!

Contemporary Logic Design
Sequential Case StudiesRandom Access Memories

Static RAM
Transistor efficient methods for implementing storage elements

Small RAM: 256 words by 4-bit

Large RAM: 4 million words by 1-bit

We will discuss a 1024 x 4 organization

Data Data

Word Enable
i

j j

Static RAM CellWords = Rows

Static RAM CellStatic RAM Cell

© R.H. Katz Transparency No. 7-46
Columns = Bits (Double Rail Encoded)

Contemporary Logic Design
Sequential Case StudiesRandom Access Memories

Static RAM Organization

1024 x 4 SRAM
CS

Chip Select Line (active lo)

Write Enable Line (active lo)
A7
A8
A9
WE
CS

IO3
10 Address Lines

4 Bidirectional Data Lines A3
A4
A5
A6
A7

IO0
IO1
IO2
IO3

A0
A1
A2
A3

© R.H. Katz Transparency No. 7-47

Contemporary Logic Design
Sequential Case StudiesRandom Access Memories

RAM Organization

Long thin layouts are not the best organization for a RAM
Address
Buffers

A9
 BuffersA8

A7

A6

Storage ArrayStorage Matrix
64 x 64
Square
Array

Some Addr
bits select

ro

Row
Decoders

A6

A5

A4

64 x 16 64 x 16 64 x 16 64 x 16

Arrayrow

Address
Buffers

A3

A2 Amplifers &Some Addr
Sense Amplifiers

Column
Decoders

A2

A1

A0

Amplifers &
Mux/Demux

Some Addr
bits select
within row

Data Buffers
CS
WE

© R.H. Katz Transparency No. 7-48

I/O0 I/O1 I/O2 I/O3

Contemporary Logic Design
Sequential Case StudiesRandom Access Memories

RAM Timing

WE

Simplified Read Timing
CS

Address Valid AddressAddress

Data Out Data Out

V alid Address

Access T ime

WE

Simplified Write Timing
CS

Memory Cycle T ime

V alid Address Address
y y

© R.H. Katz Transparency No. 7-49

Input Data Data In

Contemporary Logic Design
Sequential Case StudiesRandom Access Memories

Dynamic RAMs

W d Li

1 Transistor (+ capacitor) memory element
Word Line Read: Assert Word Line, Sense Bit Line

Write: Drive Bit Line, Assert Word Line

Bit Li

Destructive Read-Out

Need for Refresh Cycles: storage decay in ms
Bit Line

Internal circuits read word and write back

© R.H. Katz Transparency No. 7-50

Contemporary Logic Design
Sequential Case StudiesRandom Access Memories

DRAM Organization

Long rows to simplify refresh

Row
Decoders

Storage Matrix
64 x 64

Two new signals: RAS, CAS

Row Address Strobe

Column Address Strobe

replace Chip Select

Column Latches, A11

Row Address Column Address &
Control Signals

,
Multiplexers/Demultiplexers

Control
Logic

. . .
A0

RAS
CAS
WE

DINDOUT

© R.H. Katz Transparency No. 7-51

Contemporary Logic Design
Sequential Case StudiesRandom Access Memory

RAS, CAS Addressing

Even to read 1 bit, an entire 64-bit row is read!

Separate addressing into two cycles: Row Address, Column Address
Saves on package pins, speeds RAM access for sequential bits!

Address Col AddressRow AddressAddress

RAS

Col AddressRow Address

CAS

Read Cycle

Dout Valid

Read Row
Row Address Latched

Read Bit Within Row
Column Address Latched

Tri-state
Outputs

© R.H. Katz Transparency No. 7-52

Contemporary Logic Design
Sequential Case StudiesRandom Access Memory

Write Cycle Timing

Address

Col AddressRow Address

RAS

CAS (1) Latch Row Address

WE

Read Row

Din Valid

(2) WE low

(3) CAS low: replace data bit

(4) RAS high: write back the modified row

() CAS hi h l h l

© R.H. Katz Transparency No. 7-53

(5) CAS high to complete the memory cycle

Contemporary Logic Design
Sequential Case StudiesRandom Access Memory

RAM Refresh

Refresh Frequency:
4096 word RAM -- refresh each word once every 4 ms

Assume 120ns memory access cycle

This is one refresh cycle every 976 ns (1 in 8 DRAM accesses)!This is one refresh cycle every 976 ns (1 in 8 DRAM accesses)!

But RAM is really organized into 64 rows

This is one refresh cycle every 62 5 µs (1 in 500 DRAM accesses)This is one refresh cycle every 62.5 µs (1 in 500 DRAM accesses)

Large capacity DRAMs have 256 rows, refresh once every 16 µs

RAS-only Refresh (RAS cycling, no CAS cycling)

External controller remembers last refreshed row

Some memory chips maintain refresh row pointer

© R.H. Katz Transparency No. 7-54

CAS before RAS refresh: if CAS goes low before RAS, then refresh

Contemporary Logic Design
Sequential Case StudiesRandom Access Memory

DRAM Variations
P M d DRAMPage Mode DRAM:

read/write bit within last accessed row without RAS cycle

RAS CAS CAS CAS RAS CASRAS, CAS, CAS, . . ., CAS, RAS, CAS, ...

New column address for each CAS cycle

Static Column DRAM:
like page mode, except address bit changes signal new cycles
rather than CAS cyclingrather than CAS cycling

on writes, deselect chip or CAS while address lines are changing

Nibble Mode DRAM:
like page mode, except that CAS cycling implies next column
address in sequence -- no need to specify column address afteraddress in sequence -- no need to specify column address after
first CAS

Works for 4 bits at a time (hence "nibble")
RAS CAS CAS CAS CAS RAS CAS CAS CAS CAS

© R.H. Katz Transparency No. 7-55

RAS, CAS, CAS, CAS, CAS, RAS, CAS, CAS, CAS, CAS, . . .

Contemporary Logic Design
Sequential Case StudiesChapter Summary

• The Variety of Sequential Circuit Packagesy q g
Registers, Shifters, Counters, RAMs

• Counters as Simple Finite State Machines

• Counter Design Procedure
1. Derive State Diagram
2. Derive State Transition Table
3 D t i N t St t F ti3. Determine Next State Functions
4. Remap Next State Functions for Target FF Types

Using Excitation Tables; Implement Logic

• Different FF Types in Counters
J-K best for reducing gate count in packaged logic
D is easiest design plus best for reducing wiring and area in VLSI

• Asynchronous vs. Synchronous Counters
Avoid Ripple Counters! State transitions are not sharp
Beware of potential problems when cascading synchronous counters

Offset counters: easy to design with synchronous load and clear
Never use counters with asynchronous clear for this kind of application

© R.H. Katz Transparency No. 7-56

