
Contemporary Logic Design
Multi-Level Logic

Chapter # 3: Multi-Level Combinational Logic
Contemporary Logic DesignContemporary Logic Design

Randy H. Katz
University of California, Berkeley

June 1993June 1993

© R.H. Katz Transparency No. 3-1

Contemporary Logic Design
Multi-Level LogicChapter Overview

• Multi Level Logic• Multi-Level Logic

Conversion to NAND-NAND and NOR-NOR Networks

DeMorgan's Law and Pushing Bubbles

AND-OR-Invert Building Blocks

CAD Tools for Multi-Level Optimization

• Time Response in Combinational Networks

Gate Delays and Timing Waveforms

Hazards/Glitches and How To Avoid Them

© R.H. Katz Transparency No. 3-2

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: Advantages

Reduced sum of products form:Reduced sum of products form:

x = A D F + A E F + B D F + B E F + C D F + C E F + G

6 3 i t AND t 1 7 i t OR t (t i t!)6 x 3-input AND gates + 1 x 7-input OR gate (may not exist!)
25 wires (19 literals plus 6 internal wires)

1
A
D 1

2

A

A

D

E
F

F

3

4 7

1

2 3 4

A
B

B

B

C

D

D

EE

F

x x4

5

7 4

C
D

E E

F

F

F

G

Factored form:

6
C
E
F

G

x = (A + B + C) (D + E) F + G

1 x 3-input OR gate 2 x 2-input OR gates

© R.H. Katz Transparency No. 3-3

G 1 x 3 input OR gate, 2 x 2 input OR gates,
1 x 3-input AND gate
10 wires (7 literals plus 3 internal wires)

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: Conversion of Forms

NAND-NAND and NOR-NOR Networks

DeMorgan's Law: (A + B)' = A' • B'; (A • B)' = A' + B'

Written differently: A + B = (A' • B')'; (A • B) = (A' + B')'Written differently: A B (A B) ; (A B) (A B)

In other words,
OR is the same as NAND with complemented inputs
AND is the same as NOR with complemented inputsAND is the same as NOR with complemented inputs
NAND is the same as OR with complemented inputs
NOR is the same as AND with complemented inputs

OR/NAND
Equivalence

AAA A B B A + B A • B A + B A • B A A
B B

A
0
0
1
1

A
1
1
0
0

B
0
1
0
1

B
1
0
1
0

A + B
0
1
1
1

A • B
0
1
1
1 AA

A + B
1
1
1
0

A • B
1
1
1
0

≡ OR OR

1 0 1 0 1 1 A A
B B

0 0 ≡ Nand Nand

© R.H. Katz Transparency No. 3-4

Contemporary Logic Design
Multi-Level LogicMult-Level Logic: Conversion Between Forms

AND/NOR
Equivalence

A A
BB

A
0

A
1

B
0

B
1

A • B
0

A + B
0

A • B
1

A + B
1 ≡ AND ANDB B 0

0
1
1

1
1
0
0

0
1
0
1

1
0
1
0

0
0
0
1

0
0
0
1 A A

1
0
0
0

1
0
0
0

≡

AND AND

NOR NORB B ≡ NOR NOR

It is possible to convert from networks with ANDs and ORsIt is possible to convert from networks with ANDs and ORs
to networks with NANDs and NORs by introducing the
appropriate inversions ("bubbles")

To preserve logic levels each introduced "bubble" must beTo preserve logic levels, each introduced bubble must be
matched with a corresponding "bubble"

© R.H. Katz Transparency No. 3-5

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: Conversion of Forms

Example: Map AND/OR network to NAND/NAND network

AND
(A) (B) A A

AND

AND

OR

(B)
B

C
D

B

C
D

NANDNAND

D D

NANDNAND

(C) (D)
A A
B B

NAND
NAND

NAND
NAND

C C
D D

NANDNAND

© R.H. Katz Transparency No. 3-6

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: Conversion of Forms

Example: Map AND/OR network to NAND/NAND networkp p

NAND
AA

BB ZZ
NAND

NAND
CC

DD

ZZ

Z = [(A•B)' (C•D)']'

= [(A' + B') (C' + D')]'

= [(A' + B')' • (C' + D')']
Verify equivalence
of the two forms [() ()]

= (A • B) + (C • D) ¦

© R.H. Katz Transparency No. 3-7

This is the easy conversion!

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: Mapping Between Forms

Example: Map AND/OR network to NOR/NOR network
NOR NOR

NOR

A \A

B
\B

NOR NOR

NORB

C

\C

ZZ

Step 1 Step 2

\C
D

\D

p
Conserve
"Bubbles"

Conserve
"Bubbles"

Z =
Verify equivalence
of the two forms

Z =

© R.H. Katz Transparency No. 3-8

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: Mapping Between Forms

Example: Map AND/OR network to NOR/NOR network
NOR NOR

NOR

A \A

B
\B

NOR NOR

NORB

C

\C

ZZ

Step 1 Step 2

\C
D

\D

p
Conserve
"Bubbles"

Conserve
"Bubbles"

Z = {[(A' + B')' + (C' + D')']'}'
Verify equivalence
of the two forms

Z = {[(A + B) + (C + D)] }

= {(A' + B') • (C' + D')}'

(A' + B')' + (C' + D')'= (A' + B')' + (C' + D')'

= (A • B) + (C • D) ¦

© R.H. Katz Transparency No. 3-9

This is the hard conversion! AND/OR to NAND/NAND more natural

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: Mapping Between Forms

Example: Map OR/AND network to NOR/NOR networkp p

NOROR

NOR

NORAND

NOR

Conserve

OR

Z =

Conserve
Bubbles

Verify equivalence
of the two forms

Z =

© R.H. Katz Transparency No. 3-10

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: Mapping Between Forms

Example: Map OR/AND network to NOR/NOR networkp p

NOROR

NOR

NORAND

NOR

Conserve

OR

Z = [(A + B)' + (C + D)']'

Conserve
Bubbles

Verify equivalence
of the two forms

Z = [(A + B) + (C + D)]

= {(A + B)'}' • {(C + D)'}'

(A + B) (C + D) ¦= (A + B) • (C + D) ¦

© R.H. Katz Transparency No. 3-11

This is the easy conversion!

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: Mapping Between Forms

Example: Map OR/AND network to NAND/NAND networkp p

Nand
NAND

NandNand
AND

Step 1 Step 2

NAND

p
Conserve
Bubbles!

Conserve
Bubbles!

Z =
Verify equivalence
of the two forms

Z =

© R.H. Katz Transparency No. 3-12

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: Mapping Between Forms

Example: Map OR/AND network to NAND/NAND networkp p

Nand Nand

Nand
NandNand

Step 1 Step 2p
Conserve
Bubbles!

Conserve
Bubbles!

Z = {[(A' • B')' • (C' • D')']'}'
Verify equivalence
of the two forms

Z = {[(A • B) • (C • D)] }

= {(A' • B') + (C' • D')}'

(A' B')' (C' D')'= (A' • B')' • (C' • D')'

= (A + B) • (C + D) ¦

© R.H. Katz Transparency No. 3-13

This is the hard conversion! OR/AND to NOR/NOR more natural

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: More than Two Levels

ƒ = A (B + C D) + B C'
L l 1 L l 2 L l 3 L l 4

C

Level 1 Level 2 Level 3 Level 4

G1

Original
AND-OR Network

G1 D
B
A F G5 G4

G3

BB G2 \ C

CIntroduction and
Conservation of Bubbles

C G1 D

B
A

F G5 G4 G3

Redrawn in terms

A
B G2 \ C

Redrawn in terms
of conventional

NAND Gates
C G1 D
\B
A

F G5 G4 G3

© R.H. Katz Transparency No. 3-14

B G2 \ C

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: More than Two Levels

C

Level 1 Level 2 Level 3 Level 4

C
G1

D

B
F G5 G4 G3

Same beginning network
after introduction of

bubbles

A

\B
G2

C
G2

\ C G1 \ D

B
\ A

F G5 G4 G3

Final network, redrawn
in NOR-only form

\ A

B
\ C G2

© R.H. Katz Transparency No. 3-15

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: More than Two-Levels

Conversion Example

A A

B
C
D

F
X

B
C
D

F
X

(a) (b)

A

Original circuit Add double bubbles at inputs

A

B B

X

B
C

\D

F
\ X

(d)

B
C

\ D

F

(c)

\ X

Insert inverters to fix mismatches(d) (c) Distribute bubbles
some mismatches

Insert inverters to fix mismatches

© R.H. Katz Transparency No. 3-16

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: AND-OR-Invert Block

AOI Function: Three stage logic— AND, OR, Invertg g , ,
Multiple gates "packaged" as a single circuit block

logical concept possible switch implementation
A C

A
B

Z

T rue
A C

B D Z

C
D

Z

False

A B

C D

AND OR Invert
two-input two-stack

C D

&

&

+2x2 AOI Schematic
Symbol

&

&

+3x2 AOI Schematic
Symbol

© R.H. Katz Transparency No. 3-17

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: AND-OR-Invert

E l XOR i l t tiExample: XOR implementation

A xor B = A' B + A B'

= (?)'

(A' B + A B')'AOI form

(A + B') (A' + B)

(A B + A' B')

General procedure to place in AOI form:

Compute the complement in Sum of Products form by
circling the 0's in the K-map!

ƒ = (A' B' + A B)'

© R.H. Katz Transparency No. 3-18

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: AND-OR-Invert

F = B C' + A C' + A BExample: F = B C + A C + A B

F' = A' B' + A' C + B' C

I l t d b 2 i t 3 t k AOI t

10
1 0 0 0

11 01 00
AB A

C
0

Implemented by 2-input 3-stack AOI gate

F = (A + B) (A + C') (B + C')

1 0 1 1

B

1

() () ()

F' = (B' + C) (A' + C) (A' + B')

Implemented by 2-input 3-stack OAI gate
F' K-map

Implemented by 2 input 3 stack OAI gate

Example:Example:
4-bit Equality Function
Z = (A0 B0 + A0' B0') (A1 B1 + A1' B1') (A2 B2 + A2' B2') (A3 B3 + A3' B3')

Each implemented in single 2x2 AOI gate

© R.H. Katz Transparency No. 3-19

p g g

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: AND-OR-Invert

Example: AOI Implementation of a 4-Bit Equality Tester

High if A0 ° B0, Low if A0 = B0
A = B active low

Conservation of bubbles

NOR

If all inputs are low
(asserted in negative logic)
then Ai = Bi, i=0,...,3

O t t Z t dNOR Output Z asserted

© R.H. Katz Transparency No. 3-20

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: CAD Tools for Simplification

Multi-Level Optimization:p
1. Factor out common sublogic (reduce fan-in, increase gate levels),

subject to timing constraints

2 Map factored form onto library of gates2. Map factored form onto library of gates

3. Minimize number of literals (correlates with number of wires)

Factored Form:
sum of products of sum of products . . .

X = (A B + B' C) (C + D (E + A C')) + (D + E)(F G)
A

B
B

F 1 +
•

C C
D F 2

X

+

+•

• •

E

A
F

G
D

F 5
F 4

X
+

+

• •
•

•

© R.H. Katz Transparency No. 3-21

C
D

E F 3

+

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: CAD Tools for Simplification

Operations on Factored Forms:
• Decompostion

• Extraction• Extraction

• Factoring

Manipulate network by interactively
issuing the appropriate instructions

There exists no algorithm that guarantees

• Substitution

There exists no algorithm that guarantees
"optimal" multi-level network will be
obtained

• Collapsing

© R.H. Katz Transparency No. 3-22

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: CAD Tools for Simplification

Decomposition:
Take a single Boolean expression and replace with collection of new

expressions:

F = A B C + A B D + A' C' D' + B' C' D' (12 literals)F A B C + A B D + A C D + B C D

F rewritten as:

F = X Y + X' Y'

(12 literals)

F = X Y + X Y
X = A B
Y = C + D

(4 literals)

AA

A
B
C

FF

A

A

A
BB

CC

D

B
C

D

D

D

© R.H. Katz Transparency No. 3-23

Before Decomposition After Decomposition

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: CAD Tools for Simplification

Extraction: common intermediate subfunctions are factored out

F = (A + B) C D + E
G = (A + B) E'
H = C D E

(11 literals)

can be re-written as:

F = X Y + E (7 literals)F X Y + E
G = X E'
H = Y E
X = A + B
Y = C D

(7 literals)

"Kernels": primary divisors
Y = C D

XE A
A B

E GG

Y

A B
B

C
C D
D

FF

E

GG

HH

A
B C

D

© R.H. Katz Transparency No. 3-24

Before Extraction After Extraction

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: CAD Tools for Simplification

Factoring: expression in two level form re-expressed in multi-level form

F = A C + A D + B C + B D + E

can be rewritten as:

(9 literals)

F = (A + B) (C + D) + E (5 literals)

A
C

A
A

B
B

D

FF

B

CC
D

D
E

FF

Before Factoring After Factoring

E

© R.H. Katz Transparency No. 3-25

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: CAD Tools for Simplification

Substitution: function G into function F, express F in terms of G, p
F = A + B C
G = A + B

(5 literals)

F rewritten in terms of G:

F = G (A + C) (2 literals)

Collapsing: reverse of substitution; use to eliminate levels to meet
timing constraintsg

F = G (A + C)
= (A + B) (A + C)
= A A + A C + A B + B C A A A C A B B C
= A + B C ¦

© R.H. Katz Transparency No. 3-26

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: CAD Tools for Simplification

Key to implementing these operations: "division" over Boolean functionsy p g p

F = P Q + R

divisor quotient remainderdivisor quotient remainder

example:
X = A C + A D + B C + B D + EX A C A D B C B D E
Y = A + B

X "divided" by Y is—
X = Y (C + D) + EX = Y (C + D) + E

Complexity: finding suitable divisors
F = A D + B C D + E
G = A + B

G does not divide F under algebraic division rules
G does divide F under Boolean rules (very large number of these!)G does divide F under Boolean rules (very large number of these!)

F/G = (A + C) D F = [G (A + C) D] + E
= (A + B) (A + C) D + E
= (A A + A C + A B + B C) D + EF itt G Q + R

© R.H. Katz Transparency No. 3-27

 (A A + A C + A B + B C) D + E
= (A + B C) D + E
= A D + B C D + E ¦

F written as G Q + R

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: CAD Tools for Simplification

misII Session with the Full Adder

% misII
UC Berkeley, MIS Release #2.1 (compiled 3-Mar-89 at 5:32 PM)
misII> re full.adder

i II>misII> p
{co} = a b ci + a b ci' + a b' ci + a' b ci
{sum} = a b ci + a b' ci' + a' b ci' + a' b' ci

misII> pf
{co} = a b' ci + b (ci (a' + a) + a ci')

read eqntott equations

{co} a b ci b (ci (a a) a ci)
{sum} = ci (a' b' + a b) + ci' (a b' + a' b)

misII> sim1 *
misII> p

{co} = a b + a ci + b ci
{ } b i b' i' ' b i' ' b' i

two level minimization

{sum} = a b ci + a b' ci' + a' b ci' + a' b' ci
misII> pf

{co} = ci (b + a) + a b
{sum} = ci (a' b' + a b) + ci' (a b' + a' b)

misII> gd *misII> gd
misII> pf

{co} = a [2] + b ci
{sum} = a' [3]' + a [3]
[2] = ci + b

good decomposition

[3] = b' ci' + b ci

technology independent up to this point

© R.H. Katz Transparency No. 3-28

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: CAD Tools for Simplification

misII> rlib msu.genlib read library & perform technology mapping
misII> map
misII> pf

[361] = b' ci' + a'
[328] = b'
[329] = ci'

y p gy pp g

[329] = ci
{co} = [328]' [329]' + [361]'
[3] = b ci' + b' ci
{sum} = [3] a' + [3]' a

misII> pg
[361] 1890:physical 32.00
[328] 1310:physical 16.00
[329] 1310:physical 16.00
{co} 1890:physical 32.00
[3] 2310:physical 40 00

gates that implement the
various nodes and their

relative areas
[3] 2310:physical 40.00
{sum} 2310:physical 40.00
misII> pat
... using library delay model
{sum} : arrival=(2.2 2.2) { } ()
{co} : arrival=(2.2 2.2)
[328] : arrival=(1.2 1.2)
[361] : arrival=(1.2 1.2)
[329] : arrival=(1.2 1.2)
[3] : arrival=(1 2 1 2)

timing simulation
unit delay plus 0.2 time units

per fan-out
[3] : arrival=(1.2 1.2)
ci : arrival=(0.0 0.0)
b : arrival=(0.0 0.0)
a : arrival=(0.0 0.0)
misII> quit

© R.H. Katz Transparency No. 3-29

q
%

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: CAD Tools for Simplification

misII and the MSU gate library Number Name Function
VLSI Standard Cells 1310 inv A'

1120 nor2 (A+B)'
1130 nor3 (A+B+C)'
1140 nor4 (A+B+C+D)'

B
CI

[3]
SUM 1140 nor4 (A+B+C+D)

1220 nand2 (A•B)'
1230 nand3 (A•B•C)'
1240 nand4 (A•B•C•D)'

2310

[361]

A
A

2310

1660 and2/nand2 [A•B, (A•B)']
1670 and3/nand3 [A•B•C, (A•B•C)']
1680 and4/nand4 [A•B•C•D, (A•B•C•D)']

CO + &

[361]

1890

& + B
CI

1760 or2/nor2 [A+B, (A+B)']
1770 or3/nor3 [A+B+C, (A+B+C)']
1780 or4 (A+B+C+D)

1890 [328]

1310
B

1870 aoi22 (A•B + C•D)'
1880 aoi21 (A + B•C)'
1860 oai22 [(A + B)(C + D)]'
1890 oai21 [A (B + C)]'

[329]

1310

CI

1970 ao22 A•B + D•E
1810 ao222 A•B + C•D + E•F
1910 ao2222 A•B + C•D + E•F + G•H
1930 ao33 A•B•C + D•E•F

NOTE: OR-AND-INVERT
equivalent to INVERT-AND-OR

© R.H. Katz Transparency No. 3-30

2310 xor2 A•B' + A'•B
2350 xnor2 A•B + A'•B'

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: CAD Tools for Simplification

More Examples
mis with standard simplification script:

misII -f script -t pla <espresso truth table file>

Full Adder:
.model full.adder

mis pla style outputs
.model full.adder
.inputs a b ci
.outputs sum co
.names a b ci co sum
1--0 1
-1-0 1
--10 1
111- 1
.names a b ci co
11- 1

input variables

output variable11 1
1-1 1
-11 1
.end

p

SUM = A CO' + B CO' + CI CO' + A B CI (9 literals)

CO = A B + A CI + B CI (6 literals)

© R.H. Katz Transparency No. 3-31

()

Note that A xor B xor CI = A' B' CI + A B' CI' + A' B CI' + A B CI (12 literals!)

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: CAD Tools for Simplification

A
A
B

A
B

CI
CI

CO
SUM

A
B

B
CI

CI

Multilevel Implementation of Full Adder: 5 Logic Levels!

B
CI

Multilevel Implementation of Full Adder: 5 Logic Levels!

© R.H. Katz Transparency No. 3-32

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: Tools for Simplication

Two-bit Adder

.inputs a b c d

.outputs x y z
names a c z [22] x

Z = B' D + B D' + A' C D'

[22] = A D Z'.names a c z [22] x
---1 1
11-- 1
-10- 1
.names a b c d x z [22] y

[22] = A D Z

X = [22] + A C + C Z'

C C C1---0-- 1
--1---1 1
-11-0-- 1
--110-- 1
---100- 1

Y = A X + C [22] + B C X' + C D X' + D X' Z'

\X---100- 1
.names a b c d z
-0-1 1
-1-0 1
0-10 1

B

B

B

C
C

C

D

D

Z

Y

AA

X

.names a d z [22]
110 1
.end

Mi O t t

[22]

B

C

CC

DD

D

Y

A

A

8 logic levels!

Mis Output D

© R.H. Katz Transparency No. 3-33

Contemporary Logic Design
Multi-Level LogicMulti-Level Logic: CAD Tools for Simplication

BCD Increment By 1

.model bcd.increment

.inputs a b c d Z = A' D' + B' C' D'p

.outputs w x y z

.names a b c d z w
1---1 1
0111- 1
names a b c

Y = C Z + A' C' Z'

W = A Z + A' B C D.names a b c w z x
01-0- 1
0-100 1
.names a c z y
-11 1

X = A' B W' + A' C W' Z'

000 1
.names a b c d z
0--0 1
-000 1

d

A

W

\A.end
Mis Output

Z

D
B

B
C

C
\A

\A

\A

\D
Y

C

X\A
\A

\B
\C

\C\D

© R.H. Katz Transparency No. 3-34

Contemporary Logic Design
Multi-Level LogicTime Response in Combinational Networks

• emphasis on timing behavior of circuits emphasis on timing behavior of circuits

• waveforms to visualize what is happening

• simulation to create these waveforms• simulation to create these waveforms

• momentary change of signals at the outputs: hazards
can be useful— pulse shaping circuits
can be a problem — glitches: incorrect circuit operation

TTerms:

gate delay— time for change at input to cause change at output
minimum delay vs. typical/nominal delay vs. maximum delay
careful designers design for the worst case!

rise time— time for output to transition from low to high voltage

fall time— time for output to transition from high to low voltage

© R.H. Katz Transparency No. 3-35

Contemporary Logic Design
Multi-Level LogicTime Response in Combinational Networks

Pulse Shaping Circuit

A' • A = 0

3 gate delays

F is not always 0!D remains high for
three gate delays after

A h f l t hi h

© R.H. Katz Transparency No. 3-36

A changes from low to high

Contemporary Logic Design
Multi-Level LogicTime Response in Combinational Networks

Another Pulse Shaping Circuit

+

Resistor

A B
C DOpen

Switch

Close Switch Open Switch

Initially undefined

© R.H. Katz Transparency No. 3-37

Contemporary Logic Design
Multi-Level LogicTime Response in Combinational Networks

Hazards/Glitches and How to Avoid Them

Unwanting switching at the outputs

Occur because delay paths through the circuit experience
different propagation delays

Danger if logic "makes a decision" while output is unstable
OR hazard output controls an asynchronous input (theseOR hazard output controls an asynchronous input (these
respond immediately to changes rather than waiting for a
synchronizing signal called a clock)

Usual solutions:Usual solutions:
wait until signals are stable (by using a clock)

never, never, never use circuits with asynchronous inputs

design hazard-free circuits

Suggest that first two approaches be used, but we'll tell you aboutSuggest that first two approaches be used, but we ll tell you about
hazard-free design anyway!

© R.H. Katz Transparency No. 3-38

Contemporary Logic Design
Multi-Level LogicTime Response in Combinational Networks

Hazards/Glitches and How to Avoid Them

Input change causes output to go from 1 to 0 to 1Static
1 1

Input change causes output to go from 1 to 0 to 1

I t h t t t f 0 t 1 t 0
Static

1-hazard 0

1

Input change causes output to go from 0 to 1 to 00-hazard 0 0

1 1

Input change causes a double changeDynamic

1

0 0

1

Input change causes a double change
from 0 to 1 to 0 to 1 OR
from 1 to 0 to 1 to 0

Dynamic
hazards 1 1

0 0

Kinds of Hazards

0 0

© R.H. Katz Transparency No. 3-39

Contemporary Logic Design
Multi-Level LogicTime Response in Combinational Circuits

Glitch Example A
AB

G1

G3

A
\C

F

G1

G3

A
\C

F

1

1

1
1

1

1

1
1

AB
00 01 11 10

0 0 1 1 00
CD

G2

G3
\A
D

F

G2

G3
\A
D

F1 1

0

0

0

1 1

0

0

0

ABCD = 1100 ABCD = 1101

1 1 1 1

1 1 0 0

01

11
D

input change within product term
ABCD 1100

0 0 0 0 10
C

B

F = A' D + A C'
B

G1

G2

G3

A
\C

\A
D

F

G1

G2

G3

A
\C

\A
D

F

0

1

0
0

0

0

1

1

1
1

0

0

G1

G2

G3

A
\C

\A
D

F

0

1

0
1

1

1

input change that spans product terms

D D
1 01 0

ABCD = 1101 ABCD = 0101 (A is still 0)

D
1 1

ABCD = 0101 (A is 1)

© R.H. Katz Transparency No. 3-40

p g p p
output changes from 1 to 0 to 1

Contemporary Logic Design
Multi-Level LogicTime Response in Combinational Networks

Glitch Example
General Strategy: add redundant terms

F = A' D + A C' becomes A' D + A C' + C' D

This eliminates 1-hazard? How about 0-hazard?

Re-express F in PoS form:
A AB Re-express F in PoS form:

F = (A' + C')(A + D)
00 01 11 10

0 0 1 1 00
CD

Glitch present!

Add term: (C' + D)

1 1 1 1

1 1 0 0

01

11
D

()

This expression is equivalent
to the hazard-free SoP form of F

0 0 0 0 10
C

BB

© R.H. Katz Transparency No. 3-41

Contemporary Logic Design
Multi-Level LogicTime Response in Combinational Networks

Glitch Example

Start with expression that is free of static 1-hazards

F = A C' + A' D + C' D

F' (A C' A' D C' D)'
Work with complement:

F' = (A C' + A' D + C' D)'

= (A' + D) (A + D') (C + D')

= A C + A C D' + C D' + A' C D' + A' D'

= A C + C D' + A' D'

covers all the adjacent 0's in the K-map

free of static-1 and static-0 hazards!

© R.H. Katz Transparency No. 3-42

Contemporary Logic Design
Multi-Level LogicTime Response in Combinational Networks

Detecting Static Hazards in Multi-Level Circuits
Calculate transient output function

variables and complements are treated as independent variables

cannot use X + X' = 1 or X • X' = 0 for simplifications

Example:
F = A B C + (A + D) (A' + C')

F1 = A B C + A A' + A C' + A' D + C' D

Example:

2-level form

ABCD 1111 t 1110 d b t

A AB
00 01 11 10 CD

ABCD: 1111 to 1110, covered by term
ABC, so no 1-hazard present

ABCD: 1110 to 1100, term ABC goes low

0 0 1 1

1 1 1 1

00

01
D

, g
while term AC' goes high

some static hazards are present!
1 1 1 0

0 0 1 0

11

10
C

D

© R.H. Katz Transparency No. 3-43

0 0 1 0 10

B

Contemporary Logic Design
Multi-Level LogicTime Response in Combinational Networks

Static 1-hazards

Solution:
Add redundant terms to insure all adjacent
transitions are covered by terms

F2 = A C' + A' D + C' D + A B + B D

100

F2 A C + A D + C D + A B + B D

A
B
CC
D
F
F2F 2

1's hazards in F
corrected in F2

© R.H. Katz Transparency No. 3-44

Contemporary Logic Design
Multi-Level LogicTime Response in Combinational Networks

Static 0-Hazards

Similar to previous case, but work with the complement of F

If terms of the transient output function cover all 0 transitions, then
0 h d tno 0-hazards are present

F = [A B C + (A + D) (A' + C')]'

A AB
00 01 11 10 CD F [A B C + (A + D) (A + C)]

= (A' + B' + C') (A' D' + A C)

= A' D' + A' B D' + A' C D' + A B' C

0 0 1 1

1 1 1 1

00

01
D A D A B D A C D A B C

= A' D' + A B' C

+ B' C D'

1 1 1 0

0 0 1 0

11

10
C

D

0 hazard on transition from

+ B C D

F = (A + D) (A' + B + C') (B + C' + D)

0 0 1 0 10

B

0-hazard on transition from
1010 to 0010

F = (A + D) (A + B + C) (B + C + D)

0-hazard free

equivalent to F2 on last slide

© R.H. Katz Transparency No. 3-45

equivalent to F2 on last slide

Contemporary Logic Design
Multi-Level LogicTime Response in Combinational Networks

Static 0-Hazards

100

AA
B
C
D
F
F 3

0-Hazard
Corrected in F3

© R.H. Katz Transparency No. 3-46

Contemporary Logic Design
Multi-Level LogicTime Response in Combinational Networks

Designing Networks for Hazard-free operation

Simply place transient output function in a form
that guarantees that all adjacent ones areg j
covered by a term

no term of the transient output function contains
both a variable and its complement

A AB both a variable and its complement

F(A,B,C,D) = m(1,3,5,7,8,9,12,13,14,15)

00 01 11 10

0 0 1 1 00
CD

F = A B + A' D + B D + A C' + C' D

= (A' + B + C') D + A (B + C')

1 1 1 1

1 1 1 0

01

11
C

D

(factored by distributive law, which does not
introduce hazards since it does not depend on
the complementarity laws for its validity)

0 0 1 0 10
C

B

© R.H. Katz Transparency No. 3-47

Contemporary Logic Design
Multi-Level LogicTime Response in Combinational Networks

Dynamic Hazards
Example with Dynamic Hazard

G1 \A
B

1 0 1

G2

G3

B

\B
\C

0 1

1 0

1 0

1 0 1
1 0 1 0

Slow

G5

G4 \B

\C F

A

1 1 0

1 0
0

Three different paths from B or B' to output

1 0
V ery slow

Three different paths from B or B to output
ABC = 000, F = 1 to ABC = 010, F = 0

different delays along the paths: different delays along the paths:
G1 slow, G4 very slow

Handling dynamic hazards very complex

© R.H. Katz Transparency No. 3-48

Beyond our scope

Contemporary Logic Design
Multi-Level LogicChapter Review

• Transition from Simple Gates to more complex gate building blocks• Transition from Simple Gates to more complex gate building blocks

• Conversion from AND/OR, OR/AND to NAND/NAND, NOR/NOR

• Multi-Level Logic: Reduced gate count, fan-ins, but increased delay

• Use of misII to optimize multi-level logic and to perform mappings

• Time Response in Combinational Logic:
Gate Delay, Rise Time, Fall Time
Hazards and Hazard-free DesignHazards and Hazard-free Design

© R.H. Katz Transparency No. 3-49

