
Contemporary Logic Design
Two-Level Logic

Chapter #2: Two-Level Combinational LogicChapter #2: Two Level Combinational Logic

Contemporary Logic DesignContemporary Logic Design

Randy H. Katz
University of California, Berkeley

May 1993

© R.H. Katz Transparency No. 2-1

Contemporary Logic Design
Two-Level LogicMotivation

F th A lifi ti th C t f Ch t #1

• Rapid prototyping technology

Further Amplification on the Concepts of Chapter #1:

Use of computer aided design tools: espresso

• Design Techniques that Spanning Multiple Technologies• Design Techniques that Spanning Multiple Technologies

Transistor-Transistor Logic (TTL)

C l t M t l O id Sili (CMOS)Complementary Metal on Oxide Silicon (CMOS)

• Multiple Design Representations Multiple Design Representations

Truth Tables

Static gate descriptionsStatic gate descriptions

Dynamic waveform descriptions

© R.H. Katz Transparency No. 2-2

Contemporary Logic Design
Two-Level LogicChapter Overview

• Logic Functions and Switches• Logic Functions and Switches

Not, AND, OR, NAND, NOR, XOR, XNOR

• Gate Logic

Laws and Theorems of Boolean AlgebraLaws and Theorems of Boolean Algebra

Two Level Canonical Forms

Incompletely Specified FunctionsIncompletely Specified Functions

• Two Level Simplification

Boolean Cubes

Karnaugh MapsKarnaugh Maps

Quine-McClusky Method

Espresso Methos

© R.H. Katz Transparency No. 2-3

Espresso Methos

Contemporary Logic Design
Two-Level LogicLogic Functions: Boolean Algebra

Algebraic structure consisting of:Algebraic structure consisting of:

set of elements B

binary operations {+ •}binary operations {+, •}

unary operation {'}

h h h f ll i i h ldsuch that the following axioms hold:

1. B contains at least two elements, a, b, such that a b

2. Closure a,b in B,
(i) a + b in B
(ii) a • b in B

5. Distributive Laws:
(i) a + (b • c) = (a + b) • (a + c)
(ii) a • (b + c) = a • b + a • c

3. Commutative Laws: a,b in B,
(i) a + b = b + a
(ii) a • b = b • a

6. Complement:
(i) a + a' = 1
(ii) a • a' = 0

4. Identities: 0, 1 in B
(i) a + 0 = a
(ii) a • 1 = a

© R.H. Katz Transparency No. 2-4

()

Contemporary Logic Design
Two-Level LogicLogic Functions: Boolean Algebra

B = {0,1}, + = OR, • = AND, ' = NOT is a Boolean Algebra

must verify that the axioms hold:
E.g., Commutative Law:

0 + 1 = 1 + 0? 0 • 1 = 1 • 0?0 + 1 = 1 + 0?
1 = 1

0 • 1 = 1 • 0?
0 = 0

Theorem: any Boolean function that can be expressed as a truth table
can be written as an expression in Boolean Algebra using ', +, •p g g , ,

NOT

Description
If X = 0 then X ' = 1
If X = 1 then X ' = 0

Switches Gates

X X
0

X
1

T ruth T able

X T rue
X

Review
Description
Z = 1 if X and Y

Gates Truth Table Switches
X YX Z false

X
1 0 False

Review
from

Chapter 1

Z 1 if X and Y
are both 1

X
Y Z Y

0
1
0
1

X
0
0
1
1

Z
0
0
0
1

X Y

X • Y

false

true

AND

X Y

OR

Description
Z = 1 if X or Y
(or both) are 1

Gates T ruth T able Switches
X
Y Z X

0
0

Y
0
1

Z
0
1 X + Y

False

© R.H. Katz Transparency No. 2-5

OR0
1
1

1
0
1

1
1
1

X Y

T rue

Contemporary Logic Design
Two-Level LogicLogic Functions: From Expressions to Gates

More than one way to map an expression to gates

E.g., Z = A' • B' • (C + D) = (A' • (B' • (C + D)))
T1

T2

T1
use of 3-input gate

A Z A

B

C

D
T

2

T 1

Z B

C

D

Literal: each appearance of a variable or its complement in an expression

D

E.g., Z = A B' C + A' B + A' B C' + B' C
3 variables, 10 literals

© R.H. Katz Transparency No. 2-6

Contemporary Logic Design
Two-Level LogicLogic Functions: NAND, NOR, XOR, XNOR

16 functions of two variables:

F0
0
0
0

F1
0
0
0

F2
0
0
1

F3
0
0
1

F4
0
1
0

F5
0
1
0

F6
0
1
1

F7
0
1
1

F8
1
0
0

F9
1
0
0

F10
1
0
1

F1 1
1
0
1

F12
1
1
0

F13
1
1
0

F14
1
1
1

F15
1
1
1

X
0
0
1

Y
0
1
0 X, X', Y, Y', X•Y, X+Y, 0, 1 only

h lf f th ibl f ti0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1

0
X • Y X Y X + Y X Y

1

half of the possible functions

Description Gates Truth T able Switches

NAND
Description
Z = 1 if X is 0
or Y is 0

Gates T ruth T able Switches

X • Y

False

T rue X
0
0
1
1

Y
0
1
0
1

Z
1
1
1
0

X
Y Z

NOR

X Y
False 1 1 0

Description
Z = 1 if both X
and Y are 0

Gates T ruth T able Switches
X
Y

Z X Y Z T rue and Y are 0 Y 0
0
1
1

0
1
0
1

1
0
0
0

X Y

X + Y
False

© R.H. Katz Transparency No. 2-7

Contemporary Logic Design
Two-Level LogicLogic Functions: NAND, NOR Implementation

NAND, NOR gates far outnumber AND, OR in typical designs, g , yp g
easier to construct in the underlying transistor technologies

Any Boolean expression can be implemented by NAND, NOR, NOT gates

In fact, NOT is superfluous
(NOT = NAND or NOR with both inputs tied together)(NOT = NAND or NOR with both inputs tied together)

X
0

Y
0

X NOR Y
1

X
0

Y
0

X NAND Y
10

1

0

1

1

0

0

1

0

1

1

0

© R.H. Katz Transparency No. 2-8

Contemporary Logic Design
Two-Level LogicLogic Functions: XOR, XNOR

XOR: X or Y but not both ("inequality", "difference")(q y ,)
XNOR: X and Y are the same ("equality", "coincidence")

Description
Z = 1 if X has a different

Description
Z = 1 if X has the sameZ = 1 if X has a different

value than Y
Z = 1 if X has the same
value as Y

Gates
X

Y
Z

Gates
X

Y
Z

T ruth T able
X Y Z

T ruth T able
X Y ZX

0
0
1
1

Y
0
1
0
1

Z
0
1
1
0

X
0
0
1

Y
0
1
0

Z
1
0
0

(a) XOR (b) XNOR
1 1 0 1 1 1

© R.H. Katz Transparency No. 2-9

X ⊕ Y = X Y' + X' Y X ⊕ Y = X Y + X' Y'

Contemporary Logic Design
Two-Level LogicLogic Functions: Waveform View

© R.H. Katz Transparency No. 2-10

Contemporary Logic Design
Two-Level LogicLogic Functions: Rationale for Simplification

Logic Minimization: reduce complexity of the gate level implementationLogic Minimization: reduce complexity of the gate level implementation

• reduce number of literals (gate inputs)

• reduce number of gates reduce number of gates

• reduce number of levels of gates

fewer inputs implies faster gates in some technologies

fan-ins (number of gate inputs) are limited in some technologies(g p) g

fewer levels of gates implies reduced signal propagation delays

minimum delay configuration typically requires more gatesminimum delay configuration typically requires more gates

number of gates (or gate packages) influences manufacturing costs

Traditional methods:
reduce delay at expense of adding gates

New methods:

© R.H. Katz Transparency No. 2-11

New methods:
trade off between increased circuit delay and reduced gate count

Contemporary Logic Design
Two-Level LogicLogic Functions: Alternative Gate Realizations

0 1 0 1 0 1 A B C Z
A B C 0

0
0
0

0
0
1
1

0
1
0
1

0
1
0
1

Two-Level Realization
(inverters don't count)

0

Z

0
1
1
1

1
0
0
1

1
0
1
0

1
0
1
1 (inverters don t count)

Multi-Level Realization

Z 1

1 1 1 0

Multi Level Realization
Advantage: Reduced Gate

Fan-ins
0

Z 2

Complex Gate: XOR
Advantage: Fewest Gates

Z 3

0

TTL Package Counts:
Z1 - three packages (1x 6-inverters, 1x 3-input AND, 1x 3-input OR)
Z2 three packages (1x 6 inverters 1x 2 input AND 1x 2 input OR)

3

© R.H. Katz Transparency No. 2-12

Z2 - three packages (1x 6-inverters, 1x 2-input AND, 1x 2-input OR)
Z3 - two packages (1x 2-input AND, 1x 2-input XOR)

Contemporary Logic Design
Two-Level LogicLogic Functions: Waveform Verification

Under the same input stimuli, the three alternative implementations have
essentially the same waveform behavior.

Slight variations due to differences in number of gate levelsSlight variations due to differences in number of gate levels

The three implementations are equivalent

© R.H. Katz Transparency No. 2-13

Contemporary Logic Design
Two-Level LogicGate Logic: Laws of Boolean Algebra

Duality: a dual of a Boolean expression is derived by replacing ANDDuality: a dual of a Boolean expression is derived by replacing AND
operations by ORs, OR operations by ANDs, constant 0s by 1s, and
1s by 0s (literals are left unchanged).

A t t t th t i t f i i l t f it d l!Any statement that is true for an expression is also true for its dual!

Useful Laws/Theorems of Boolean Algebra:
O ti ith 0 d 1Operations with 0 and 1:

1. X + 0 = X
2. X + 1 = 1

1D. X • 1 = X
2D. X • 0 = 0

Idempotent Law:

Involution Law:

3. X + X = X 3D. X • X = X

Involution Law:

Laws of Complementarity:

4. (X')' = X

5 X + X' = 1 5D X • X' = 0

Commutative Law:

5. X + X = 1 5D. X • X = 0

6. X + Y = Y + X 6D. X • Y = Y • X

© R.H. Katz Transparency No. 2-14

Contemporary Logic Design
Two-Level LogicGate Logic: Laws of Boolean Algebra (cont)

Associative Laws:
7 (X + Y) + Z = X + (Y + Z) 7D (X • Y) • Z = X • (Y • Z)

Distributive Laws:
8 X • (Y+ Z) = (X • Y) + (X •Z) 8D X + (Y Z) = (X + Y) (X + Z)

7. (X + Y) + Z = X + (Y + Z)
= X + Y + Z

7D. (X • Y) • Z = X • (Y • Z)
= X • Y • Z

Simplification Theorems:

 8. X • (Y+ Z) = (X • Y) + (X •Z) 8D. X + (Y• Z) = (X + Y) • (X + Z)

9. X • Y + X • Y' = X 9D. (X + Y) • (X + Y') = X

DeMorgan's Law:

10. X + X • Y = X
11. (X + Y') • Y = X • Y

10D. X • (X + Y) = X
11D. (X • Y') + Y = X + Y

12D (X Y Z) ' X' Y' Z'
g

Duality:

12. (X + Y + Z + ...)' = X' • Y' • Z' • ...
13. {F(X1,X2,...,Xn,0,1,+,•)}' = {F(X1',X2',...,Xn',1,0,•,+)}

12D. (X • Y • Z • ...) ' = X' + Y' + Z' + ...

D DDuality:
14. (X + Y + Z + ...) = X • Y • Z • ...

15. {F(X1,X2,...,Xn,0,1,+,•)} = {F(X1,X2,...,Xn,1,0,•,+)}

D

D
14D. (X •FY • Z • ...) = X + Y + Z + ...D

Theorems for Multiplying and Factoring:
16. (X + Y) • (X' + Z) = X • Z + X' • Y 16D. X • Y + X' • Z = (X + Z) • (X' + Y)

© R.H. Katz Transparency No. 2-15

Consensus Theorem:
17. (X • Y) + (Y • Z) + (X' • Z) =

X • Y + X' • Z
17D. (X + Y) • (Y + Z) • (X' + Z) =

(X + Y) • (X' + Z)

Contemporary Logic Design
Two-Level LogicGate Logic: Laws of Boolean Algebra

Proving theorems via axioms of Boolean Algebra:

E.g., prove the theorem: X • Y + X • Y' = X

E.g., prove the theorem: X + X • Y = X

© R.H. Katz Transparency No. 2-16

Contemporary Logic Design
Two-Level LogicGate Logic: Laws of Boolean Algebra

Proving theorems via axioms of Boolean Algebra:

E.g., prove the theorem: X • Y + X • Y' = X

X • Y + X •Y' = X • (Y + Y') distributive law (8)

X • (Y + Y') = X • (1)

X • (1) = X

complementary law (5)

identity (1D) ()y ()

E.g., prove the theorem: X + X • Y = X
X + X • Y = X • 1 + X • Y

X • 1 + X • Y = X • (1 + Y)

identity (1D)

distributive law (8)

X • (1 + Y) = X • (1)

X • (1) = X

identity (2)

identity (1)

© R.H. Katz Transparency No. 2-17

Contemporary Logic Design
Two-Level LogicGate Logic: Laws of Boolean Algebra

DeMorgan's Law

(X + Y)' = X' • Y'

X
0
0
1

Y
0
1
0

X
1
1
0

Y
1
0
1

X + Y
1
0
0

X•Y
1
0
0

NOR is equivalent to AND
with inputs complemented

1
1

0
1

0
0

1
0

0
0

0
0

(X • Y)' = X' + Y'
NAND is equivalent to OR
with inputs complemented

X
0
0
1

Y
0
1
0

X
1
1
0

Y
1
0
1

X + Y
1
1
1

X•Y
1
1
1with inputs complemented 1

1
0
1

0
0

1
0

1
0

1
0

Example:

DeMorgan's Law can be used to convert AND/OR expressions
to OR/AND expressions

p
Z = A' B' C + A' B C + A B' C + A B C'

Z' = (A + B + C') • (A + B' + C') • (A' + B + C') • (A' + B' + C)

© R.H. Katz Transparency No. 2-18

Contemporary Logic Design
Two-Level LogicGate Logic: Laws of Boolean Algebra

Apply the laws and theorems to simplify Boolean equationspp y p y q

Example: full adder's carry out function
Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin

© R.H. Katz Transparency No. 2-19

Contemporary Logic Design
Two-Level LogicGate Logic: Laws of Boolean Algebra

Apply the laws and theorems to simplify Boolean equationspp y p y q

Example: full adder's carry out function
Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin

identity

= A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin

= A' B Cin + A B Cin + A B' Cin + A B Cin' + A B Cin

= (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin

= (1) B Cin + A B' Cin + A B Cin' + A B Cin() C C C C

= B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin

= B Cin + A B' Cin + A B Cin + A B Cin' + A B Cin= B Cin + A B Cin + A B Cin + A B Cin + A B Cin

= B Cin + A (B' + B) Cin + A B Cin' + A B Cin

B Ci A (1) Ci A B Ci ' A B Ci

associative

= B Cin + A (1) Cin + A B Cin' + A B Cin

= B Cin + A Cin + A B (Cin' + Cin)

© R.H. Katz Transparency No. 2-20

= B Cin + A Cin + A B (1)

= B Cin + A Cin + A B

Contemporary Logic Design
Two-Level Logic

A + 0 = A A + 1 = 1

Gate Logic: Switching Equivalents

A A

0

= =

1

A • A = A

A A

A

A

A + A = A

= =

A 1

Idempotent Laws Identity Laws

A A

Idempotent Laws Identity Laws

X Y + X Y = X X + X Y = X
A + A = 1 A • A = 0

A

A
A A

X Y

X Y

X Y

X

=

1

=

0

= =

X X

Complementarity Laws Simplification Theorems

© R.H. Katz Transparency No. 2-21

Contemporary Logic Design
Two-Level LogicGate Logic: 2-Level Canonical Forms

Truth table is the unique signature of a Boolean functionq g

Many alternative expressions (and gate realizations) may have the same
truth table

Canonical form: standard form for a Boolean expression
provides a unique algebraic signature

Sum of Products Form
also known as disjunctive normal form, minterm expansionj

F = A' B C + A B' C' + A B' C + A B C' + A B C
0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

F
0

F
1

C
0

B
0

A
0 0

0
0
1
1

1
1
1
0
0

0
1
0
1
0

0
0
1
1
0

0
0
0
0
1 1

1
1
1

0
0
0
0

0
1
0
1

0
0
1
1

1
1
1
1

© R.H. Katz Transparency No. 2-22

F' = A' B' C' + A' B' C + A' B C'

Contemporary Logic Design
Two-Level LogicGate Logic: Two Level Canonical Forms

S f P d t product term / minterm:Sum of Products product term / minterm:
ANDed product of literals in which each
variable appears exactly once, in true or
complemented form (but not both!)

A
0

B
0

C
0

Minterms
A B C = m0 complemented form (but not both!)

F in canonical form:

F(A B C) = Σm(3 4 5 6 7)

A B C = m 1
A B C = m 2
A B C = m 3
A B C

0
0
0
0
1

0
0
1
1
0

0
1
0
1
0

A B C m 0

F(A,B,C) = Σm(3,4,5,6,7)
= m3 + m4 + m5 + m6 + m7
= A' B C + A B' C' + A B' C

+ A B C' + A B C

A B C = m 4
A B C = m 5
A B C = m 6
A B C = m7

1
1
1
1

0
0
1
1

0
1
0
1

Shorthand Notation for

canonical form/minimal form
F = A B' (C + C') + A' B C + A B (C' + C)

A B C = m 7 1 1 1

Minterms of 3 Variables = A B' + A' B C + A B

= A (B' + B) + A' B CB

= A + A' B C

= A + B C
2 l AND/OR

C

A

F

© R.H. Katz Transparency No. 2-23

2-Level AND/OR
Realization F = (A + B C)' = A' (B' + C') = A' B' + A' C'

Contemporary Logic Design
Two-Level LogicGate Logic: 2 Level Canonical Forms

Product of Sums / Conjunctive Normal Form / Maxterm Expansion

Maxterm:
ORed sum of literals in which each
variable appears exactly once in either

A
0

B
0

C
0

Maxterms
A + B + C = M 0 variable appears exactly once in either

true or complemented form, but not both!

Maxterm form:
Fi d t th t bl h F i 0

0
0
0
1

0
1
1
0

1
0
1
0

0
A + B + C = M 1
A + B + C = M 2
A + B + C = M 3
A + B + C = M Find truth table rows where F is 0

0 in input column implies true literal
1 in input column implies complemented

literal

1
1
1
1

0
0
1
1

0
1
0
1

A + B + C = M 4
A + B + C = M 5
A + B + C = M 6
A + B + C = M 7

Maxterm Shorthand Notation
for a Function of Three Variables

7

F(A,B,C) = ΠM(0,1,2)
= (A + B + C) (A + B + C') (A + B' + C)= (A + B + C) (A + B + C) (A + B + C)

F’(A,B,C) = ΠM(3,4,5,6,7)
= (A + B' + C') (A' + B + C) (A' + B + C') (A' + B' + C) (A' + B' + C')

© R.H. Katz Transparency No. 2-24

 (A B C) (A B C) (A B C) (A B C) (A B C)

Contemporary Logic Design
Two-Level LogicGate Logic: Two Level Canonical Forms

Sum of Products, Products of Sums, and DeMorgan's Law

F' = A' B' C' + A' B' C + A' B C'
Apply DeMorgan's Law to obtain F:

(F')' = (A' B' C' + A' B' C + A' B C')'

F = (A + B + C) (A + B + C') (A + B' + C)

F' = (A + B' + C') (A' + B + C) (A' + B + C') (A' + B' + C) (A' + B' + C')

(F')' = {(A + B' + C') (A' + B + C) (A' + B + C') (A' + B' + C) (A' + B' + C')}'
F A' B C A B' C' A B' C A B C' A B C

Apply DeMorgan's Law to obtain F:

F = A' B C + A B' C' + A B' C + A B C' + A B C

© R.H. Katz Transparency No. 2-25

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Canonical Forms

Four Alternative Implementations of F:
A

B

Canonical Sum of Products
B

F 1
C

Minimized Sum of Products

C i l P d t f S

F 2

Canonical Products of Sums

F 3

Minimized Products of Sums

F

© R.H. Katz Transparency No. 2-26

F 4

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Canonical Forms

Waveform Verification of the Four Alternatives

100 200

A

B

C

F 1

F 2

F 3

Eight Unique Combinations
of Three Inputs

Except for timing glitches,
output waveforms of the
four implementations are

essentially identicalessentially identical

© R.H. Katz Transparency No. 2-27

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Canonical Forms

Mapping Between Forms

1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand
replace minterm indices with the indices not already used

E.g., F(A,B,C) = Σm(3,4,5,6,7) = ΠM(0,1,2)

2 Maxterm to Minterm conversion:2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand
replace maxterm indices with the indices not already used

E.g., F(A,B,C) = ΠM(0,1,2) = Σm(3,4,5,6,7)

3. Minterm expansion of F to Minterm expansion of F':
i i t h th d f li t th i di t l d d i Fin minterm shorthand form, list the indices not already used in F

E.g., F(A,B,C) = Σm(3,4,5,6,7) F'(A,B,C) = Σm(0,1,2)
= ΠM(0,1,2) = ΠM(3,4,5,6,7)(, ,) (, , , ,)

4. Minterm expansion of F to Maxterm expansion of F':
rewrite in Maxterm form, using the same indices as F

© R.H. Katz Transparency No. 2-28

E.g., F(A,B,C) = Σm(3,4,5,6,7) F'(A,B,C) = ΠM(3,4,5,6,7)
= ΠM(0,1,2) = Σm(0,1,2)

Contemporary Logic Design
Two-Level LogicGate Logic: Positive vs. Negative Logic

Normal Convention: Postive Logic/Active High
Low Voltage = 0; High Voltage = 1

Alternative Convention sometimes used: Negative Logic/Active LowAlternative Convention sometimes used: Negative Logic/Active Low

F

Negative Logic Positive Logic V oltage T ruth T able

F F FA B BA A BF
low
low
low
hi h

F
0
0
0
1

F
1
1
1
0

A
low
low
high
hi h

B
low
high
low
hi h

B
0
1
0
1

A
0
0
1
1

A
1
1
0
0

B
1
0
1
0high 1 0 high high 1 1 0 0

Behavior in terms
of Electrical Levels

Two Alternative Interpretations
Positive Logic AND
Negative Logic OR

© R.H. Katz Transparency No. 2-29

Dual Operations

Contemporary Logic Design
Two-Level LogicGate Logic: Positive vs. Negative Logic

Conversion from Positive to Negative Logic

F

Negative Logic Positive Logic V oltage T ruth T able

F
high

F
1

F
0

A
low

B
low

B
0

A
0

A
1

B
1high

low
low
low

1
0
0
0

0
1
1
1

low
low
high
high

low
high
low
high

0
1
0
1

0
0
1
1

1
1
0
0

1
0
1
0

Positive Logic NOR: A + B = A • B

Negative Logic NAND: A • B = A + B

Dual operations:
AND becomes OR, OR becomes AND
Complements remain unchanged

© R.H. Katz Transparency No. 2-30

Contemporary Logic Design
Two-Level LogicGate Logic: Positive vs. Negative Logic

Practical Example
U OR t if i t

Change
Request

(active high)

Change
Request

(active low)

Use OR gate if input
polarities are neg. logic

(active high)

Change
Lights

(active high)

Active
High

(active low)

Change
Lights

(active low)

Active
Low Use AND gate

if active high

(a)

T imer
Expired

(active high)
(b)

T imer
Expired

(active low)

g

Change
Request

(active low)

Change
Request

(active low)

Timer

Change
Lights

(active low)

Timer

Change
Lights

(active low)
Mismatch between
input and output
logic polarities

(c)

T imer
Expired

(active low) Bubble
Mismatch

(d)

T imer
Expired

(active low) Bubble
Match

Use NAND w/ inverted

© R.H. Katz Transparency No. 2-31

Use NAND w/ inverted
inputs if negative logic

Contemporary Logic Design
Two-Level LogicGate Logic: Incompletely Specified Functions

n input functions have 2 possible input configurationsnp p p g

for a given function, not all input configurations may be possible

this fact can be exploited during circuit minimization!this fact can be exploited during circuit minimization!

E.g., Binary Coded Decimal Digit Increment by 1

A B C D W X Y Z

BCD digits encode the decimal digits 0 - 9
in the bit patterns 0000 - 10012 2

Off-set of W
A
0
0
0
0
0

B
0
0
0
0
1

C
0
0
1
1
0

D
0
1
0
1
0

W
0
0
0
0
0

X
0
0
0
1
1

Y
0
1
1
0
0

Z
1
0
1
0
1

On-set of W
0
0
0
0
1
1

1
1
1
1
0
0

0
0
1
1
0
0

0
1
0
1
0
1

0
0
0
1
1
0

1
1
1
0
0
0

0
1
1
0
0
0

1
0
1
0
1
0

Don't care (DC) set of W

1
1
1
1
1
1

0
0
0
1
1
1

0
1
1
0
0
1

1
0
1
0
1
0

0
X
X
X
X
X

0
X
X
X
X
X

0
X
X
X
X
X

0
X
X
X
X
X

These input patterns should
never be encountered in practise

associated output values are

© R.H. Katz Transparency No. 2-32

1
1

1
1

1
1

0
1

X
X

X
X

X
X

X
X

p
"Don't Cares"

Contemporary Logic Design
Two-Level LogicGate Logic: Incompletely Specified Functions

Don't Cares and Canonical Forms

Canonical Representations of the BCD Increment by 1 Function:

Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15

Z = Σm(0, 2, 4, 6, 8) + d(10, 11, 12 ,13, 14, 15)

Z = M1 • M3 • M5 • M7 • M9 • D10 • D11 • D12 • D13 • D14 • D15

Z= ΠM(1, 3, 5, 7, 9) • D(10, 11, 12, 13, 14 ,15)

© R.H. Katz Transparency No. 2-33

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Algebraic Simplification:Algebraic Simplification:
not an algorithm/systematic procedure

how do you know when the minimum realization has been found?how do you know when the minimum realization has been found?

Computer-Aided Tools:
i l i i l i iprecise solutions require very long computation times,

especially for functions with many inputs (>10)

heuristic methods employed —heuristic methods employed
"educated guesses" to reduce the amount of computation
good solutions not best solutions

Still Relevant to Learn Hand Methods:

insights into how the CAD programs work, and their
strengths and weaknessesstrengths and weaknesses

ability to check the results, at least on small examples

don't have computer terminals during exams

© R.H. Katz Transparency No. 2-34

don't have computer terminals during exams

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Key Tool: The Uniting Theorem — A (B' + B) = A

A
0

B
0

F
0

y g ()

F = A B' + A B = A (B' + B) = A

0
1
1

1
0
1

0
1
1 B's values change within the on-set rows

B is eliminated A remains

A's values don't change within the on-set rows

B is eliminated, A remains

A
0
0

B
0
1

G
1
0

G = A' B' + A B' = (A' + A) B' = B'

B's values stay the same within the on set rows1
1

0
1

1
0

B's values stay the same within the on-set rows

A's values change within the on-set rows
A is eliminated, B remains

A s values change within the on set rows

Essence of Simplification:
find two element subsets of the ON-set where only one variable

© R.H. Katz Transparency No. 2-35

y
changes its value. This single varying variable can be eliminated!

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Boolean Cubes
Vi l t h i f id tif i hVisual technique for identifying when

the Uniting Theorem can be applied
XYZ 0 1

Just another way to
represent the truth table

011

010

111

110 XY
1-cube

X

01 11

n input variables =
n dimensional "cube"

000

001

100

101
Y Z

01

00

11

10

Y

2-cube 3-cube

X
000 100

WXYZ 1011

X
00 10

0111
0011

0010

1010
1110

1111

0001

0110
0101

1000

1001
1101

1100
Y

Z
W

© R.H. Katz Transparency No. 2-36

4-cube

0000 0100
1000

X

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Mapping Truth Tables onto Boolean Cubes
ON-set = filled-in nodes

OFF-set = empty nodes

DC-set = X'd nodes Cube of n-1 dimensions
Reduced expression
contains n 1 variablesF

A asserted and unchanged

contains n-1 variables
01 11

B
B varies within loop

10 00
A

G

A varies within loop
01 11

B

B complemented and unchanged 10 00

A

© R.H. Katz Transparency No. 2-37

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Three variable example: Full Adder Carry Out

(A' + A) B Cin

A B Cin Cout

011 111 A B (Cin' + Cin)
A
0
0
0
0

B
0
0
1
1

Cin
0
1
0
1

Cout
0
0
0
1

010
110

The ON-set is covered
by the OR of the subcubes

of lower dimensionality1
1
1
1

0
0
1
1

B 0
1
0
1

0
1
1
1

001

000 100

101
Cin

of lower dimensionality

A A (B + B') Cin

Cout = B Cin + A B + A Cin

© R.H. Katz Transparency No. 2-38

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Subcubes of Higher Dimensions than 2

F(A,B,C) = Σm(4,5,6,7)011 111
On-set forms a rectangle,

i.e., a cube of two dimensions

011 111

110
010

represents an expression in one variable
i.e., 3 dimensions - 2 dimensions

101
001

000

B
C

A is asserted and unchanged
B and C vary

100 000
A

B and C vary

This subcube represents the
literal Aliteral A

© R.H. Katz Transparency No. 2-39

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

In a 3-cube:In a 3-cube:

a 0-cube, i.e., a single node, yields a term in three literals

a 1 cube i e a line of two nodes yields a term in two literalsa 1-cube, i.e., a line of two nodes, yields a term in two literals

a 2-cube, i.e., a plane of four nodes, yields a term in one literal

a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

In generalIn general,
an m-subcube within an n-cube (m < n) yields a term with

n - m literals

© R.H. Katz Transparency No. 2-40

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Karnaugh Map Method
hard to draw cubes of more than 4 dimensions

K-map is an alternative method of representing the truth table that
helps visualize adjacencies in up to 6 dimensions

A

helps visualize adjacencies in up to 6 dimensions

Beyond that, computer-based methods are needed

B 0 1

0
0 2

0 4 12 8

AB
CD

A

00 01 11 00

00
2-variable

K-map
1 1 3

AB

0

1

4

5

12

13

8

9
A

01

11
D

p

0 2 6 4

C 3

2

7

6

15

14

11

10

00 01 11 10

0 10
C

B

3-variable
K-map

4 variable
1 3 7 5

B

1 B 4-variable
K-map

Numbering Scheme: 00, 01, 11, 10

© R.H. Katz Transparency No. 2-41

Numbering Scheme: 00, 01, 11, 10
Gray Code — only a single bit changes from code

word to next code word

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Karnaugh Map Method

Adjacencies in the K-Map

A 011 111

000 010 110 100

00 01 11 10

0

AB
C

A 0

010
110 000

001

010

01 1

1 10

1 1 1

100

101

0

1 001
101

B

C
B 000 100

C

A

Wrap from first to last column

Top row to bottom row

© R.H. Katz Transparency No. 2-42

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

K-Map Method Examples

A asserted, unchanged
B varies

A
B 0 1

0 1 0

A
B 0 1

1 1 0

B complemented, unchanged
A varies

0 1 1 0 0 1

G =F =

A B A AA B A

Cin 00 01 11 10

0 0 0 1 0

AB
C

A

00 01 11 10

0 0 0 1 1

1 0 1 1 1

0

1

0

0

0

0

1

1

1

1

B B

F(A,B,C) =Cout =

© R.H. Katz Transparency No. 2-43

()

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

K-Map Method Examples

A asserted, unchanged
B varies

A
B 0 1

0 1 0

A
B 0 1

1 1 0

B complemented, unchanged
A varies

0 1 1 0 0 1

F = A G = B'

A B A AA B A

Cin 00 01 11 10

0 0 0 1 0

AB
C

A

00 01 11 10

0 0 0 1 1

1 0 1 1 1

0

1

0

0

0

0

1

1

1

1

Cout = A B + B Cin + A Cin F(A,B,C) = A

B B

© R.H. Katz Transparency No. 2-44

()

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

More K-Map Method Examples, 3 Variables

F(A B C) = Σm(0 4 5 7)
00 C

AB
01 11 10

A

F(A,B,C) = Σm(0,4,5,7)

F =
1 0 0 1

1 1 0 0

0

1 00

B

F' simply replace 1's with 0's and vice versa00 C
AB

01 11 10

A

F'(A,B,C) = Σm(1,2,3,6)

F' =

0 1 1 0

0 0 1 1

0

1

B

© R.H. Katz Transparency No. 2-45

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

More K-Map Method Examples, 3 Variables

F(A B C) Σ (0 4 5 7)
00 C

AB
01 11 10

A

F(A,B,C) = Σm(0,4,5,7)

F = B' C' + A C
1 0 0 1

1 1 0 0

0

1

In the K-map, adjacency wraps from left to right
and from top to bottom

00

B

F' simply replace 1's with 0's and vice versa
00 C

AB
01 11 10

A

F'(A,B,C) = Σm(1,2,3,6)

F' = B C' + A' C

F simply replace 1 s with 0 s and vice versa0 1 1 0

0 0 1 1

0

1
F = B C + A C

B

© R.H. Katz Transparency No. 2-46

Compare with the method of using DeMorgan's Theorem
and Boolean Algebra to reduce the complement!

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

K-map Method Examples: 4 variables

F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)AB A

F =
AB

00 01 11 10

1 0 0 1 00

CD

0 1 0 0

1 1 1 1

01

11
D

1 1 1 1

1 1 1 1

11

10
C

B

© R.H. Katz Transparency No. 2-47

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

K-map Method Examples: 4 variables

F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)AB
00 01 11 10CD

A

F = C + A' B D + B' D'
00 01 11 10

1 0 0 1 00

CD

Find the smallest number
of the largest possible

subcubes that cover the

0 1 0 0

1 1 1 1

01

11
C

D

subcubes that cover the
ON-set1 1 1 1 10

C

BB

0011
0111 1111

1110

1011

1010

K-map Corner Adjacency
Illustrated in the 4-Cube

0010 0110

0001C
1101

1110

1001
0101

© R.H. Katz Transparency No. 2-48

D

0000

0001 C

A

B 0100
1000

1100

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

K-map Method: Circling Zerosp g

AB
00 01 11 10 CD

A
F = (B + C + D) (A + C + D) (B + C + D)

1 0 0 1

0 1 0 0

00

01 0 1 0 0

1 1 1 1

01

11
C

D

1 1 1 1 10

B

F = B C D + A C D + B C D
Replace F by F, 0’s become 1’s and vice versa

F = B C D + A C D + B C D

F = (B + C + D) (A + C + D) (B + C + D)

© R.H. Katz Transparency No. 2-49

F (B C D) (A C D) (B C D)

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

K-map Example: Don't Cares

Don't Cares can be treated as 1's or 0's if it is advantageous to do so

F(A,B,C,D) = Σm(1,3,5,7,9) + Σd(6,12,13)

AB
00 01 11 10

0 0 X 0 00

CD

A

() () ()

F = w/o don't cares

F = w/ don't cares

1 1 X 1

1 1 0 0

01

11
D

F w/ don t cares1 1 0 0

0 X 0 0

11

10
C

BB

© R.H. Katz Transparency No. 2-50

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

K-map Example: Don't Cares

F(A B C D) Σ (1 3 5 7 9) Σd(6 12 13)

Don't Cares can be treated as 1's or 0's if it is advantageous to do so

AB A
F(A,B,C,D) = Σm(1,3,5,7,9) + Σd(6,12,13)

F = A'D + B' C' D w/o don't cares

AB
00 01 11 10

0 0 X 0 00

CD

F = C' D + A' D w/ don't cares

By treating this DC as a "1", a 2-cube
can be formed rather than one 0-cube

1 1 X 1

1 1 0 0

01

11
C

D

can be formed rather than one 0-cube
0 X 0 0 10

C

B
AB

00 01 11 10 CD

A

0 0 X 0

1 1 X 1

00

01
DIn PoS form: F = D (A' + C')

1 1 0 0

0 X 0 0

11

10
C

D In PoS form: F = D (A + C)

Same answer as above,
but fewer literals

© R.H. Katz Transparency No. 2-51

B

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Design Example: Two Bit Comparator

Block DiagramF 1 F 2 F 3 D C B A A Block Diagram
and

Truth Table
1
0
0
0
0

0
1
1
1
0

0
0
0
0
1

0
1
0
1
0

0
0
1
1
0

0

1

0

0

=, >, <
F 1 A B = C D
F 2 A B < C D
F 3 A B > C D

B

C
D

N 1

N 2

A 4-Variable K-map
for each of the 3
output functions

0
1
0
0
0

0
0
1
1
0

1
0
0
0
1

0
1
0
1
0

0
0
1
1
0

1

0

0

1 p0

0
1
0
0

0
0
0
1
0

1
1
0
0
1

0
1
0
1
0

0
0
1
1
0

0

1

1

1

0
0
1

0
0
0

1
1
0

1
0
1

0
1
1

© R.H. Katz Transparency No. 2-52

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Design Example: Two Bit Comparator

AB
00 01 11 10 CD

A AB
00 01 11 10 CD

A AB
00 01 11 10 CD

A

1 0 0 0

0 1 0 0

00

01
D

0 0 0 0

1 0 0 0

00

01
D

0 1 1 1

0 0 1 1

00

01
D

0 0 1 0

0 0 0 1

11

10
C

1 1 0 1

1 1 0 0

11

10
C

0 0 0 0

0 0 1 0

11

10
C

B
K-map for F 1

B
K-map for F 2

B
K-map for F 3

F1 =

F2 =F2 =

F3 =

© R.H. Katz Transparency No. 2-53

Contemporary Logic Design
Two-Level LogicGate Logic:Two-Level Simplification

Design Example: Two Bit Comparator

AB
00 01 11 10

1 0 0 000

CD

A AB
00 01 11 10

0 0 0 000

CD

A AB
00 01 11 10

0 1 1 100

CD

A

1 0 0 0

0 1 0 0

0 0 1 0

00

01

11
D

0 0 0 0

1 0 0 0

1 1 0 1

00

01

11
D

0 1 1 1

0 0 1 1

0 0 0 0

00

01

11
D

0 0 1 0

0 0 0 1

11

10
C

B

1 1 0 1

1 1 0 0

11

10
C

B

0 0 0 0

0 0 1 0

11

10
C

B

F1 = A' B' C' D' + A' B C' D + A B C D + A B' C D'

K-map for F 1 K-map for F 2 K-map for F 3

F2 = A' B' D + B' C D + A' C

F3 = B C' D' + A C' + A B D'

A xnor B xnor C xnor D

© R.H. Katz Transparency No. 2-54

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Design Example: Two Bit Adder

Block Diagram
and

X
0

Y
0

Z
0

D
0

C
0

B
0

A
0

A
B N1 X and

Truth Table+ N 3 0
0
0
0

0
1
1
0

1
0
1
1

1
0
1
0

0
1
1
0

1

0

B

C
D

N 1

N 2

X
Y
Z

A 4-variable K-map
for each of the 3
output functions

0
0
0
1
0

0
1
1
0
1

1
0
1
0
0

0
1
0
1
0

0
0
1
1
0

1

0

0

1 0

0
1
1
0

1
1
0
0
1

0
1
0
1
1

0
1
0
1
0

0
0
1
1
0

0

1

1

1 0

1
1
1

1
0
0
1

1
0
1
0

0
1
0
1

0
0
1
1

1 1

© R.H. Katz Transparency No. 2-55

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Design Example (Continued)

AB
00 01 11 10

0 0 0 0 00

CD

A AB
00 01 11 10

0 0 1 1 00

CD

A AB
00 01 11 10

0 1 1 0 00

CD

A

0 0 1 0

0 1 1 1

01

11
D

0 1 0 1

1 0 1 0

01

11
D

1 0 0 1

1 0 0 1

01

11
D

0 0 1 1 10
C

B

1 1 0 0 10
C

B

0 1 1 0 10
C

B

X =

K-map for X K-map for Y K-map for Z

Z =

Y =Y

© R.H. Katz Transparency No. 2-56

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Design Example (Continued)

AB
00 01 11 10 CD

A AB
00 01 11 10 CD

A AB
00 01 11 10 CD

A

0 0 0 0

0 0 1 0

00

01
D

0 0 1 1

0 1 0 1

00

01
D

0 1 1 0

1 0 0 1

00

01
D

0 1 1 1

0 0 1 1

11

10
C

B

1 0 1 0

1 1 0 0

11

10
C

B

1 0 0 1

0 1 1 0

11

10
C

B

X = A C + B C D + A B D 1's on diagonal suggest XOR!
Y K M t i i l d

B
K-map for X

B
K-map for Y

B
K-map for Z

Z = B D' + B' D = B xor D

Y = A' B' C + A B' C' + A' B C' D + A' B C D' + A B C' D' + A B C D

Y K-Map not minimal as drawn

Y A B C + A B C + A B C D + A B C D + A B C D + A B C D

= B' (A xor C) + A' B (C xor D) + A B (C xnor D)

= B' (A xor C) + B (A xor B xor C)
gate count
reduced if

© R.H. Katz Transparency No. 2-57

= B' (A xor C) + B (A xor B xor C) reduced if
XOR available

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Design Example (Continued)
\ D \ A \ C A \ B

B

Two alternative
implementations of Y
with and without XOR

C

with and without XOR

Y 1

D

Note: XOR typically
requires 4 NAND gates

to implement!to implement!

X XOR Y

X

Y

Y

© R.H. Katz Transparency No. 2-58

Y 2

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Design Example: BCD Increment By 1
AB

00 01 11 10

0 0 X 1 00

CD

A AB
00 01 11 10

0 1 X 0 00

CD

A

0 0 X 0

0 1 X X

0 0 X X

01

11

10
C

D
0 1 X 0

1 0 X X

0 1 X X

01

11

10
C

D
X W

0 0 X X 10

B

0 1 X X 10

B

AB A AB AAB
00 01 11 10

0 0 X 0

1 1 X 0

00

01

CD

A AB
00 01 11 10

1 1 X 1

0 0 X 0

00

01

CD

A

1 1 X 0

0 0 X X

1 1 X X

01

11

10
C

D
0 0 X 0

0 0 X X

1 1 X X

01

11

10
C

D Z Y

W = Y =

B B

© R.H. Katz Transparency No. 2-59

X = Z =

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

AB A AB AAB
00 01 11 10

0 0 X 1

0 0 X 0

00

01

CD

A AB
00 01 11 10

0 1 X 0

0 1 X 0

00

01

CD

A

0 0 X 0

0 1 X X

0 0 X X

01

11

10
C

D
0 1 X 0

1 0 X X

0 1 X X

01

11

10
C

D
X W

B B

AB A AB A
00 01 11 10

0 0 X 0

1 1 X 0

00

01

CD

D

00 01 11 10

1 1 X 1

0 0 X 0

00

01

CD

DZY

0 0 X X

1 1 X X

11

10
C

D
0 0 X X

1 1 X X

11

10
C

D Z Y

W = B C D + A D' Y = A' C' D + C D'

B B

© R.H. Katz Transparency No. 2-60

X = B C' + B D' + B' C D Z = D'

Contemporary Logic Design
Two-Level LogicGate Logic: Two Level Simplification

Definition of Terms

implicant: single element of the ON-set or any group of elements
that can be combined together in a K-map

prime implicant: implicant that cannot be combined with another
implicant to eliminate a term

essential prime implicant: if an element of the ON-set is covered byessential prime implicant: if an element of the ON set is covered by
a single prime implicant, it is an essential prime

Objective:Objective:

grow implicants into prime implicants

th ON t ith f i i li t iblcover the ON-set with as few prime implicants as possible

essential primes participate in ALL possible covers

© R.H. Katz Transparency No. 2-61

Contemporary Logic Design
Two-Level LogicGate Logic: Two Level Simplication

Examples to Illustrate Terms

6 Prime Implicants:
A' B' D B C' A C A' C' D A B B' C D

AB
00 01 11 10

0 1 1 000

CD

A

A B D, B C , A C, A C D, A B, B C D

essential

0 1 1 0

1 1 1 0

1 0 1 1

00

01

11
D

Minimum cover = B C' + A C + A' B' D
1 0 1 1

0 0 1 1

11

10
C

B

5 Prime Implicants:
AB

00 01 11 10

0 0 1 000

CD

A

B D, A B C', A C D, A' B C, A' C' D

essential

0 0 1 0

1 1 1 0

0 1 1 1

00

01

11
D

essential

Essential implicants form minimum cover
0 1 0 0 10

C

B

© R.H. Katz Transparency No. 2-62

Contemporary Logic Design
Two-Level LogicGate Logic: Two Level Simplification

More Examples

Prime Implicants:AB A Prime Implicants:
B D, C D, A C, B' C

ti l

AB
00 01 11 10

0 0 0 0 00

CD

essential

Essential primes form the minimum cover

0 1 1 0

1 1 1 1

01

11
C

D

1 0 1 1 10

B

© R.H. Katz Transparency No. 2-63

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Algorithm: Minimum Sum of Products Expression from a K-Map

Step 1: Choose an element of ON-set not already covered by an implicant

Step 2: Find "maximal" groupings of 1's and X's adjacent to that element.
Remember to consider top/bottom row, left/right column, and
corner adjacencies. This forms prime implicants (always a power
of 2 number of elements)of 2 number of elements).

Repeat Steps 1 and 2 to find all prime implicants

Step 3: Revisit the 1's elements in the K map If covered by single primeStep 3: Revisit the 1 s elements in the K-map. If covered by single prime
implicant, it is essential, and participates in final cover. The 1's it
covers do not need to be revisited

Step 4: If there remain 1's not covered by essential prime implicants, then
select the smallest number of prime implicants that cover the
remaining 1's

© R.H. Katz Transparency No. 2-64

Contemporary Logic Design
Two-Level LogicGate Logic: Two Level Simplification

Example: ƒ(A,B,C,D) = m(4,5,6,8,9,10,13) + d(0,7,15)

AB
00 01 11 10

X 1 0 100

CD

A

X 1 0 1

0 1 1 1

0 X X 0

00

01

11
D

0 1 0 1 10
C

B

Initial K-map

© R.H. Katz Transparency No. 2-65

Contemporary Logic Design
Two-Level LogicGate Logic: Two Level Simplification

Example: ƒ(A,B,C,D) = m(4,5,6,8,9,10,13) + d(0,7,15)

AB
00 01 11 10

X 1 0 100

CD

A AB
00 01 11 10

X 1 0 100

CD

A

X 1 0 1

0 1 1 1

0 X X 0

00

01

11
D

X 1 0 1

0 1 1 1

0 X X 0

00

01

11
D

0 1 0 1 10
C

B

0 1 0 1 10
C

B

Initial K-map Primes around
A' B C' D'

© R.H. Katz Transparency No. 2-66

Contemporary Logic Design
Two-Level LogicGate Logic: Two Level Simplification

Example: ƒ(A,B,C,D) = m(4,5,6,8,9,10,13) + d(0,7,15)

AB
00 01 11 10

X 1 0 100

CD

A AB
00 01 11 10

X 1 0 100

CD

A AB
00 01 11 10

X 1 0 100

CD

A

X 1 0 1

0 1 1 1

0 X X 0

00

01

11
D

X 1 0 1

0 1 1 1

0 X X 0

00

01

11
D

X 1 0 1

0 1 1 1

0 X X 0

00

01

11
D

0 1 0 1 10
C

B

0 1 0 1 10
C

B

0 1 0 1 10
C

B

Initial K-map Primes around
A' B C' D'

Primes around
A B C' D

© R.H. Katz Transparency No. 2-67

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Example Continued
AB

00 01 11 10

X 1 0 1 00

CD

A

0 1 1 1

0 X X 0

01

11
C

D

0 1 0 1 10
C

B

Primes around
A B C' D

© R.H. Katz Transparency No. 2-68

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Example Continued
AB

00 01 11 10

X 1 0 1 00

CD

A AB
00 01 11 10

X 1 0 1 00

CD

A

0 1 1 1

0 X X 0

01

11
C

D
0 1 1 1

0 X X 0

01

11
C

D

0 1 0 1 10
C

B

0 1 0 1 10
C

B

Primes around
A B' C' D'

Primes around
A B C' D

© R.H. Katz Transparency No. 2-69

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

Example Continued
AB

00 01 11 10

X 1 0 1 00

CD

A AB
00 01 11 10

X 1 0 1 00

CD

A AB
00 01 11 10

X 1 0 1 00

CD

A

0 1 1 1

0 X X 0

01

11
C

D
0 1 1 1

0 X X 0

01

11
C

D
0 1 1 1

0 X X 0

01

11
C

D

0 1 0 1 10
C

B

0 1 0 1 10
C

B

0 1 0 1 10
C

B

Primes around
A B' C' D'

Primes around
A B C' D

Essential Primes
with Min Cover

© R.H. Katz Transparency No. 2-70

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

5-Variable K-maps
BC

DE
A =0

00 01 11 10
00 0 4 12 8

10
BC

DE 00 01 11
00 A=0

1 1

1

01

11

10

1 5 13 9

3 7 15 11

2 6 14 10
1 1

01

11

10

1 1

1 1

BC
DE

A=1
00 01 11 10

00

2 6 14 10

16 20 28 24 00
10

BC
DE 00 01 11

A=1 1A 1 00

01

11

16 20 28 24

17 21 29 25

19 23 31 27

00

1 01

11

A=1 1

1 1

1 1 1

ƒ(A,B,C,D,E) = Σm(2,5,7,8,10,

10 18 22 30 26 10

ƒ(A,B,C,D,E) Σm(2,5,7,8,10,
13,15,17,19,21,23,24,29 31)

=

© R.H. Katz Transparency No. 2-71

Contemporary Logic Design
Two-Level LogicGate Logic: Two-Level Simplification

5-Variable K-maps
BCBC

DE 00 01 11 10
00

01

A=0

1 1

1

BC
DE

A =0
00 01 11 10

00 0 4 12 8
01

11

10

1 1

1

1 1

1

01

11

10

1 5 13 9

3 7 15 11

2 6 14 10

BC
DE 00 01 11 10

00A=1 1

BC
DE

A=1
00 01 11 10

00

2 6 14 10

16 20 28 24 00

01

11

A 1 1

1 1 1

1 1 1

A 1 00

01

11

16 20 28 24

17 21 29 25

19 23 31 27

ƒ(A,B,C,D,E) = Σm(2,5,7,8,10,
13 15 17 19 21 23 24 29 31)

10 10 18 22 30 26

13,15,17,19,21,23,24,29 31)

= C E + A B' E + B C' D' E'
+ A' C' D E'

© R.H. Katz Transparency No. 2-72

Contemporary Logic Design
Two-Level LogicGate Logic: Two Level Simplification

6- Variable K-Maps
CD

CD
EF

AB =00

00 01 11 10
00

01
0 4 12 8

1 5 13 9

CD
EF

AB =00

00 01 11 10
00

01

11

1

CD

11

10

1 5 13 9

3 7 15 11

2 6 14 10
CD

EF

10

00 01 11 10

1 1

ƒ(A B C D E F)

EF

AB =01

00 01 11 10
00

01

11

16 20 28 24

17 21 29 25

19 23 31 27

AB =01 00

01

11

10

1

1 1ƒ(A,B,C,D,E,F) =
Σm(2,8,10,18,24,

26,34,37,42,45,50,
53,58,61)

10
19 23 31 27

18 22 30 26

CD
EF 00 01 11 10

00

10

CD
EF

AB =11

00 01 11 10
00

1 1

53,58,6)
=

AB =11 00

01

11

10

48 52 60 56

49 53 61 57

51 55 63 59

50 54 62 58

01

11

10

1 1

1 1

50 54 62 58

CD
EF

AB =10

00 01 11 10
00

01
32 36 44 40

CD
EF

AB =10

00 01 11 10
00

01 1 1

© R.H. Katz Transparency No. 2-73

01

11

10

33 37 45 41

35 39 47 43

34 38 46 42

11

10 1 1

Contemporary Logic Design
Two-Level LogicGate Logic: Two Level Simplification

6- Variable K-Maps
CD

CD
EF

AB =00

00 01 11 10
00

01
0 4 12 8

1 5 13 9

CD
EF

AB =00

00 01 11 10
00

01

11

1

CD

11

10

1 5 13 9

3 7 15 11

2 6 14 10
CD

EF

10

00 01 11 10

1 1

ƒ(A B C D E F)

EF

AB =01

00 01 11 10
00

01

11

16 20 28 24

17 21 29 25

19 23 31 27

AB =01 00

01

11

10

1

1 1ƒ(A,B,C,D,E,F) =
Σm(2,8,10,18,24,

26,34,37,42,45,50,
53,58,61)

10
19 23 31 27

18 22 30 26

CD
EF 00 01 11 10

00

10

CD
EF

AB =11

00 01 11 10
00

1 1

53,58,6)
= D' E F' + A D E' F

+ A' C D' F'

AB =11 00

01

11

10

48 52 60 56

49 53 61 57

51 55 63 59

50 54 62 58

01

11

10

1 1

1 1

50 54 62 58

CD
EF

AB =10

00 01 11 10
00

01
32 36 44 40

CD
EF

AB =10

00 01 11 10
00

01 1 1

© R.H. Katz Transparency No. 2-74

01

11

10

33 37 45 41

35 39 47 43

34 38 46 42

11

10 1 1

Contemporary Logic Design
Two-Level LogicGate Logic: CAD Tools for Simplification

Quine-McCluskey Method
Tabular method to systematically find all prime implicants

ƒ(A,B,C,D) = Σm(4,5,6,8,9,10,13) + Σd(0,7,15)

Step 1: Fill Column 1 with ON-set and
DC-set minterm indices. Group
b b f 1'

Stage 1: Find all prime implicants Implication Table

Column I Column II Column III
by number of 1's.

0000

0100
10001000

0101
01100110
1001
1010

01110111
1101

1111

© R.H. Katz Transparency No. 2-75

Contemporary Logic Design
Two-Level LogicGate Logic: CAD Tools for Simplification

Quine-McCluskey Method
Tabular method to systematically find all prime implicants

ƒ(A,B,C,D) = Σm(4,5,6,8,9,10,13) + Σd(0,7,15)

Step 1: Fill Column 1 with ON-set and
DC-set minterm indices. Group
b b f 1'

Stage 1: Find all prime implicants Implication Table

Column I Column II Column III
by number of 1's.

Step 2: Apply Uniting Theorem—
Compare elements of group w/

0000 0- 00
- 000

0100
1000 010

p g p
N 1's against those with N+1 1's.
Differ by one bit implies adjacent.
Eliminate variable and place in
next column

1000 010-
01- 0

0101 100-
0110 10- 0next column.

E.g., 0000 vs. 0100 yields 0-00
0000 vs. 1000 yields -000

0110 10 0
1001
1010 01-1

-101
0111 011

When used in a combination,
mark with a check. If cannot be
combined, mark with a star. These

0111 011-
1101 1-01

1111 -111
11 1

© R.H. Katz Transparency No. 2-76

,
are the prime implicants.
Repeat until no further combinations can be made.

11-1

Contemporary Logic Design
Two-Level LogicGate Logic: CAD Tools for Simplification

Quine-McCluskey Method
Tabular method to systematically find all prime implicants

ƒ(A,B,C,D) = Σm(4,5,6,8,9,10,13) + Σd(0,7,15)

Implication Table

Column I Column II Column III
Step 1: Fill Column 1 with ON-set and

DC-set minterm indices. Group
b b f 1'

Stage 1: Find all prime implicants

0000 0- 00 * 01-- *
- 000 *

0100 -1-1 *
1000 010

by number of 1's.

Step 2: Apply Uniting Theorem—
Compare elements of group w/

1000 010-
01- 0

0101 100- *
0110 10-0 *

p g p
N 1's against those with N+1 1's.
Differ by one bit implies adjacent.
Eliminate variable and place in
next column 0110 10 0

1001
1010 01-1

-101
0111 011

next column.

E.g., 0000 vs. 0100 yields 0-00
0000 vs. 1000 yields -000

0111 011-
1101 1-01 *

1111 -111
11 1

When used in a combination,
mark with a check. If cannot be
combined, mark with a star. These

© R.H. Katz Transparency No. 2-77

11-1
,

are the prime implicants.
Repeat until no further combinations can be made.

Contemporary Logic Design
Two-Level LogicGate Logic: CAD Tools for Simplification

Quine-McCluskey Method Continued

AB
CD 00 01 11 10

A
Prime Implicants:

0-00 = A' C' D'
100- = A B' C'

-000 = B' C' D'
10-0 = A B' D'

00

01
D

X 1 0 1

0 1 1 1

1-01 = A C' D
-1-1 = B D

01-- = A' B11

10

D

C
0 X X 0

0 1 0 1

B

© R.H. Katz Transparency No. 2-78

Contemporary Logic Design
Two-Level LogicGate Logic: CAD Tools for Simplification

Quine-McCluskey Method Continued

Prime Implicants:AB
CD 00 01 11 10

A

0-00 = A' C' D'
100- = A B' C'

-000 = B' C' D'
10-0 = A B' D'

00

01
D

X 1 0 1

0 1 1 1

1-01 = A C' D
-1-1 = B D

01-- = A' B11

10

D

C
0 X X 0

0 1 0 1

Stage 2: find smallest set of prime implicants that cover the ON-set

B

Stage 2: find smallest set of prime implicants that cover the ON-set
recall that essential prime implicants must be in all covers

another tabular method– the prime implicant chartanother tabular method– the prime implicant chart

© R.H. Katz Transparency No. 2-79

Contemporary Logic Design
Two-Level LogicGate Logic: CAD Tools for Simplification

Prime Implicant Chart

rows = prime implicantsp p
columns = ON-set elements
place an "X" if ON-set element is

covered by the prime implicant

© R.H. Katz Transparency No. 2-80

Contemporary Logic Design
Two-Level LogicGate Logic: CAD Tools for Simplification

Prime Implicant Chart

If column has a single X, than therows = prime implicants If column has a single X, than the
implicant associated with the row
is essential. It must appear in
minimum cover

p p
columns = ON-set elements
place an "X" if ON-set element is

covered by the prime implicant

© R.H. Katz Transparency No. 2-81

Contemporary Logic Design
Two-Level LogicGate Logic: CAD Tools for Simplification

Prime Implicant Chart (Continued)

Eliminate all columns covered by
essential primes

© R.H. Katz Transparency No. 2-82

Contemporary Logic Design
Two-Level LogicGate Logic: CAD Tools for Simplification

Prime Implicant Chart (Continued)

Eliminate all columns covered by
essential primes

Find minimum set of rows that
cover the remaining columns

© R.H. Katz Transparency No. 2-83

ƒ = A B' D' + A C' D + A' B

Contemporary Logic Design
Two-Level LogicGate Logic: CAD Tools for Simplification

ESPRESSO Method
Problem with Quine-McCluskey: the number of prime implicants

grows rapidly with the number of inputs
upper bound: 3 /n, where n is the number of inputsnupper bound: 3 /n, where n is the number of inputs

finding a minimum cover is NP-complete, i.e., a computational
expensive process not likely to yield to any efficient
algorithmalgorithm

Espresso: trades solution speed for minimality of answer

don't generate all prime implicants (Quine-McCluskey Stage 1)

judiciously select a subset of primes that still covers the ON-set

operates in a fashion not unlike a human finding primes in a K-map

© R.H. Katz Transparency No. 2-84

Contemporary Logic Design
Two-Level LogicGate Logic: CAD Tools for Simplification

Espresso Method: Overview

1. Expands implicants to their maximum size
Implicants covered by an expanded implicant are removed from

further consideration
Quality of result depends on order of implicant expansion
Heuristic methods used to determine order
Step is called EXPAND

Irredundant cover (i.e., no proper subset is also a cover) is extracted
from the expanded primes

Just like the Quine-McCluskey Prime Implicant Chart
Step is called IRREDUNDANT COVER

2.

Step is called IRREDUNDANT COVER

Solution usually pretty good, but sometimes can be improved
Might exist another cover with fewer terms or fewer literals
Sh i k i i li ll i h ill ON

3.

Shrink prime implicants to smallest size that still covers ON-set
Step is called REDUCE

Repeat sequence REDUCE/EXPAND/IRREDUNDANT COVER to find4. Repeat sequence REDUCE/EXPAND/IRREDUNDANT COVER to find
alternative prime implicants

Keep doing this as long as new covers improve on last solution

A number of optimizations are tried e g identify and remove5.

© R.H. Katz Transparency No. 2-85

A number of optimizations are tried, e.g., identify and remove
essential primes early in the process

Contemporary Logic Design
Two-Level LogicGate Logic: CAD Tools for Simplification

Espresso Inputs and Outputs
ƒ(A,B,C,D) = m(4,5,6,8,9,10,13) + d(0,7,15)

Espresso Input Espresso Output
.i 4
.o 1
.ilb a b c d

-- # inputs
-- # outputs
-- input names

Espresso Input Espresso Output
.i 4
.o 1
.ilb a b c d.ob f

.p 10
0100 1
0101 1

p
-- output name
-- number of product terms
-- A'BC'D'
-- A'BC'D

.ilb a b c d

.ob f

.p 3
1-01 1
10 0 10101 1

0110 1
1000 1
1001 1
1010 1

-- A BC D
-- A'BCD'
-- AB'C'D'
-- AB'C'D

10-0 1
01-- 1
.e

1010 1
1101 1
0000 -
0111 -

-- AB'CD'
-- ABC'D
-- A'B'C'D' don't care
-- A'BCD don't care1111 -

.e -- ABCD don't care
-- end of list

ƒ = A C' D + A B' D' + A' B

© R.H. Katz Transparency No. 2-86

Contemporary Logic Design
Two-Level LogicGate Logic: CAD Tools for Simplification

Espresso: Why Iterate on Reduce, Irredundant Cover, Expand?
AB

CD 00 01 11 10

00

A

1 1 0 0

AB
CD 00 01 11 10

00

A

1 1 0 000

01
D

1 1 0 0

1 1 1 1

00

01
D

1 1 0 0

1 1 1 1

11

10

D

C
0 0 1 1

1 1 1 1

11

10

D

C
0 0 1 1

1 1 1 1

B B

Initial Set of Primes found by
Steps1 and 2 of the Espresso Result of REDUCE:

Shrink primes while stillMethod

4 primes, irredundant cover,
but not a minimal cover!

Shrink primes while still
covering the ON-set

Choice of order in which
t f h i k i i t t

© R.H. Katz Transparency No. 2-87

but not a minimal cover! to perform shrink is important

Contemporary Logic Design
Two-Level LogicGate Logic: CAD Tools for Simplification

Espresso Iteration (Continued)

AB
CD 00 01 11 10

00

A

1 1 0 0

AB
CD 00 01 11 10

00

A

1 1 0 000

01
D

1 1 0 0

1 1 1 1

00

01
D

1 1 0 0

1 1 1 1

11

10

D

C
0 0 1 1

1 1 1 1

11

10

D

C
0 0 1 1

1 1 1 1

B B

Second EXPAND generates a
different set of prime implicants

IRREDUNDANT COVER found by
final step of espresso

Only three prime implicants!

© R.H. Katz Transparency No. 2-88

Contemporary Logic Design
Two-Level LogicTwo-Level Logic: Summary

Primitive logic building blocksPrimitive logic building blocks
INVERTER, AND, OR, NAND, NOR, XOR, XNOR

Canonical Forms
Sum of Products, Products of Sums

Incompletely specified functions/don't caresIncompletely specified functions/don t cares

Logic Minimization
Goal: two-level logic realizations with fewest gates and fewest

number of gate inputs

Obtained via Laws and Theorems of Boolean AlgebraObtained via Laws and Theorems of Boolean Algebra

or Boolean Cubes and the Uniting Theorem

or K map Methods up to 6 variablesor K-map Methods up to 6 variables

or Quine-McCluskey Algorithm

© R.H. Katz Transparency No. 2-89

or Espresso CAD Tool

