Review

« Amdahl’s Law:
Execution Time without enhancement E

Speedup(E) = --mmmmmmmmmmmmm e
Execution Time with enhancement E (1-F) + F/IS

1

e CPUTime & CPI:

CPU time = Instruction count x CPI x clock cycle time
CPU time = Instruction count x CPI/ clock rate

CSCE430/830 ISA

Outline

e Instruction Set Overview
— Classifying Instruction Set Architectures (ISAs) <

— Memory Addressing
— Types of Instructions

 MIPS Instruction Set (Topic of next lecture)

CSCE430/830 ISA

Instruction Set Architecture (ISA)

e Serves as an interface between software and
hardware.

* Provides a mechanism by which the software
tells the hardware what should be done.

High level language code : C, C++, Java, Fortran,
. compiler
Assembly language code: architecture specific statements
. assembler
Machine language code: architecture specific bit patterns

software

instruction set

hardware

CSCE430/830 ISA

Interface Design

A good interface:

» Lasts through many implementations (portability,
compatability)

* Is used in many different ways (generality)
* Provides convenient functionality to higher levels
* Permits an efficient implementation at lower levels

use

use \ imp 1 time
[Interface

imp 2

N

us

imp 3

CSCE430/830 ISA

Instruction Set Design Issues

* Instruction set design issues include:
— Where are operands stored?
» registers, memory, stack, accumulator
— How many explicit operands are there?
» 0,1, 2, or3
— How is the operand location specified?
» register, immediate, indirect, . ..
— What type & size of operands are supported?
» byte, int, float, double, string, vector. ..
— What operations are supported?
» add, sub, mul, move, compare.. ..

CSCE430/830 ISA

Evolution of Instruction Sets

Single Accumulator (EDSAC 1950, Maurice Wilkes)
I

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

/ \

High-level Language Based Concept of a Family
(B5000 1963) / (IBM 360 1964)

General Purpose Register Machines

/ T

Complex Instruction Sets Load/Store Architecture
(Vax, Intel 432 1977-80) (ClDC 6600, Cray 1 1963-76)
I
CISC RISC
Intel x86, Pentium (MIPS,Sparc,HP-PA,IBM RS6000,PowerPC . . .1987)

CSCE430/830 ISA

Classifying ISAs

Accumulator (before 1960, e.g. 68HC11):
1-address add A acc « acc + mem[A]

Stack (1960s to 1970s):
O-address add tos « tos + next

Memory-Memory (1970s to 1980s):
2-address add A, B mem[A] « mem[A] + mem[B]
3-address add A, B, C mem[A] « mem[B] + mem[C]

Register-Memory (1970s to present, e.g. 80x86):
2-address add R1, A R1 « R1+ meml[A]
load R1, A R1 « mem[A]

Register-Register (Load/Store) (1960s to present, e.g. MIPS):

3-address add R1, R2, R3 R1« R2+R3
load R1, R2 R1 « mem[R2]
store R1, R2 mem[R1] « R2
CSCE430/830 ISA

Operand Locations in Four ISA Classes

« GPR >

(a) Stack (b) Accumulator (c) Register-memory (d) Register-register/load-store

[
Processor

| |

CSCE430/830 ISA

Code Sequence C=A+8B
for Four Instruction Sets

Stack Accumulator Register Register (load-
(register-memory) | Store)
Push A Load A Load R1, A Load R1,A
Push B Add B Add R1, B Load R2, B
Add Store C Store C, R1 Add R3, R1, R2
Pop C Store C, R3
\ie/ |\
ALU
memory memory —

CSCE430/830

acc = acc + mem|[C] R1 = R1+ mem[C]

R3= R1+ R2 54

More About General Purpose Registers

« Why do almost all new architectures use
GPRs?
— Registers are much faster than memory (even cache)
» Register values are available immediately

» When memory isn’t ready, processor must wait
(“stall”)

— Registers are convenient for variable storage
» Compiler assigns some variables just to registers

» More compact code since small fields specify
registers
(compared to memory addresses)

Processor Memory Disk

Cache

Registers

|

CSCE430/830

ISA

Stack Architectures

e [nstruction set: T0S

add, sub, mult, div, . .. v
push A, pop A w

« Example: A*B - (A+C*B)

pUShA AE R P A C
oush B A B B Lot
mul
push A
push C
push B
mul
add
sub

CSCE430/830

A A*B
A*B

p=
*
vs)
Lirioiw

B*C! AYB*C |

ISA

Stacks: Pros and Cons

 Pros
— Good code density (implicit top of stack)
— Low hardware requirements
— Easy to write a simpler compiler for stack architectures

« Cons
— Stack becomes the bottleneck
— Little ability for parallelism or pipelining

— Datais not always at the top of stack when need, so
additional instructions like TOP and SWAP are needed

— Difficult to write an optimizing compiler for stack
architectures

CSCE430/830

ISA

Accumulator Architectures

e [nstruction set:

add A, sub A, mult A, divA, ... w
load A, store A
I
—
« Example: A*B - (A+C*B) acc = acc +-*/ mem([A]

load B ;

iB.i LBXC) LA+B*CIiA+B*Ci i A I iA*Bi iresult
mul C
add A
store D
load A
mul B
sub D

CSCE430/830 ISA

Accumulators: Pros and Cons

* Pros
—Very low hardware requirements
—Easy to design and understand

e Cons
—Accumulator becomes the bottleneck
— Little ability for parallelism or pipelining
—High memory traffic

CSCE430/830 ISA

Memory-Memory Architectures

* Instruction set:
(3 operands) add A, B, C subA,B,C mul A, B, C
(2 operands) add A, B sub A, B mul A, B

« Example: A*B - (A+C*B)

— 3 operands 2 operands
mul D, A, B mov D, A
mul E, C, B mul D, B
add E, A E mov E, C
subE,D, E mul E, B

add E, A
sub E, D

CSCE430/830 ISA

Memory-Memory:
Pros and Cons

* Pros

— Requires fewer instructions (especially if 3 operands)
— Easy to write compilers for (especially if 3 operands)

 Cons
— Very high memory traffic (especially if 3 operands)
— Variable number of clocks per instruction
— With two operands, more data movements are required

CSCE430/830 ISA

Register-Memory Architectures

—
e Instruction set:
add R1, A sub R1, A mul R1, B
load R1, A store R1, A

« Example: A*B - (A+C*B)

load R1, A R1= R1+,-*/ mem[B]
mul R1, B [* A*B */

storeR1, D

load R2, C

mul R2, B [* C*B */

add R2, A [* A+ CB */

sub R2,D /* AB - (A +C*B) */

CSCE430/830 ISA

Memory-Register:
Pros and Cons

* Pros

— Some data can be accessed without loading first
— Instruction format easy to encode
— Good code density

e Cons

— Operands are not equivalent (poor orthogonal)
— Variable number of clocks per instruction
— May limit number of registers

CSCE430/830 ISA

Load-Store Architectures

. —

e |Instruction set:
add R1, R2, R3 sub R1, R2, R3mul R1, R2, R3
load R1, &A store R1, &A move R1, R2

« Example: A*B - (A+C*B) AL
load R1, &A —
load R2, &B R3= R1+-*/R2
load R3, &C
mul R7, R3, R2 [* C*B J
add R8, R7, R1 [* A + C*B J
mul R9, R1, R2 [* A*B J
sub R10, R9, RS [* A*B - (A+C*B) */

CSCE430/830 ISA
| oad-Store:
Pros and Cons
* Pros

— Simple, fixed length instruction encodings
— Instructions take similar number of cycles
— Relatively easy to pipeline and make superscalar

e Cons

— Higher instruction count
— Not all instructions need three operands
— Dependent on good compiler

CSCE430/830

ISA

Registers:
Advantages and Disadvantages

» Advantages
— Faster than cache or main memory (no addressing mode or tags)
— Deterministic (no misses)
— Can replicate (multiple read ports)
— Short identifier (typically 3 to 8 bits)
— Reduce memory traffic

» Disadvantages
— Need to save and restore on procedure calls and context switch
— Can'’t take the address of a register (for pointers)
— Fixed size (can’t store strings or structures efficiently)
— Compiler must manage
— Limited number

Every ISA designed after 1980 uses a load-store ISA (i.e
RISC, to simplify CPU design).

CSCE430/830

ISA

Word-Oriented Memory

Organization .. sabit Bytes Addr.
Words Words

_ 0000
« Memory is byte addressed Addr 0001
and provides access for bytes 0000 0002
(8 bits), half words (16 bits), Addr 0003
words (32 bits), and double — 0004
words(64 bits).
() Adar 0005
0004 0006
 Addresses Specify Byte 0007
Locations 0008
— Address of first byte in word Addr 0009
— Addresses of successive words =
differ by 4 (32-bit) or 8 (64-bit) 0008 1 pdar 0010
= 0011
0008 0012
Addr 0013
0012 0014
0015

CSCE430/830

ISA

Byte Ordering

 How should bytes within multi-byte word be
ordered in memory?

« Conventions
— Sun’s, Mac’s are “Big Endian” machines
» Least significant byte has highest address

— Alphas, PC’s are “Little Endian” machines
» Least significant byte has lowest address

CSCE430/830

ISA

Byte Ordering Example

* Big Endian

— Least significant byte has highest address
» Little Endian

— Least significant byte has lowest address
 Example

— Variable x has 4-byte representation 0x01234567
— Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67

Little Endian 0x100 0x101 0x102 0x103
67 45 23 01

CSCE430/830

ISA

Reading Byte-Reversed Listings

 Disassembly
— Text representation of binary machine code
— Generated by program that reads the machine code

« Example Fragment

8048365: 5b pop %ebx
8048366: 81 ¢c3 ab 12 00 00 add $0x12ab, %ebx
804836¢: 83 bb 28 0000 00 00 cnpl x0, 0x28(%ebx)
» Deciphering Numbers

— Value: 0Ox12ab

— Pad to 4 bytes: 0x000012ab

— Split into bytes: 00 00 12 ab

— Reverse: ab 12 00 00

CSCE430/830 ISA

Types of Addressing Modes (VAX)

Addressing Mode Example Action

1. Register direct Add R4, R3 R4 <- R4 + R3

2. Immediate Add R4, #3 R4<-R4 + 3

3. Displacement Add R4, 100(R1) R4 <- R4 + M[100 + R1]

4. Register indirect Add R4, (R1) R4 <- R4 + M[R1]

5. Indexed Add R4, (R1 + R2) R4 <- R4 + M[R1 + R2]

6. Direct Add R4, (1000) R4 <- R4 + M[1000]

7. Memory Indirect Add R4, @(R3) R4 <- R4 + M[M[R3]]

8. Autoincrement Add R4, (R2)+ R4 <- R4 + M[R2]
R2<-R2+d

9. Autodecrement Add R4, (R2)- R4 <- R4 + M[R2]
R2<-R2-d

10. Scaled Add R4, 100(R2)[R3] R4 <-R4 +

M[100 + R2 + R3*d]

» Studies by [Clark and Emer] indicate that modes 1-4 account for
93% of all operands on the VAX.

CSCE430/830 ISA

CSCE430/830

Types of Operations

Arithmetic and Logic:
Data Transfer:
Control

System

Floating Point
Decimal

String

Graphics

AND, ADD
MOVE, LOAD, STORE
BRANCH, JUMP, CALL
OS CALL, VM

ADDF, MULF, DIVF
ADDD, CONVERT
MOVE, COMPARE
(DE)COMPRESS

ISA

CSCE430/830

80x86 Instruction Frequency

Rank | nstruction Frequency
1 load 22%
2 branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 register move 4%
9 call 1%
10 return 1%

Total 96%

ISA

Relative Frequency of
Control Instructions

Operation SPECint92 SPECfp92
Call/Return 13% 11%
Jumps 6% 4%
Branches 81% 87%

* Design hardware to handle branches
quickly, since these occur most frequently

CSCE430/830

ISA

Summery

e Instruction Set Overview
— Classifying Instruction Set Architectures (ISAs)
— Memory Addressing
— Types of Instructions

* MIPS Instruction Set (Topic of next class) <
— Overview
— Registers and Memory
— Instructions

CSCE430/830

ISA

