
Review

• Amdahl’s Law:
Execution Time without enhancement E 1

S d (E)Speedup(E) = --- = ----------------------
Execution Time with enhancement E (1 - F) + F/S

• CPU Time & CPI:

CPU time = Instruction count x CPI x clock cycle timeCPU time = Instruction count x CPI x clock cycle time
CPU time = Instruction count x CPI / clock rate

ISACSCE430/830

Outline

• Instruction Set Overview
– Classifying Instruction Set Architectures (ISAs)

– Memory Addressing

Types of Instructions– Types of Instructions

• MIPS Instruction Set (Topic of next lecture)

ISACSCE430/830

Instruction Set Architecture (ISA)

• Serves as an interface between software and
hardware.

• Provides a mechanism by which the software
tells the hardware what should be done.

High level language code : C, C++, Java, Fortran,
il

Assembly language code: architecture specific statements
compiler

assembler
Machine language code: architecture specific bit patterns

software

instruction set

hardware

ISACSCE430/830

hardware

Interface Design

A good interface:

• Lasts through many implementations (portability,
compatability)

• Is used in many different ways (generality)

• Provides convenient functionality to higher levels

• Permits an efficient implementation at lower levels

Interface
imp 1use

use

time

imp 2

imp 3

use

use

ISACSCE430/830

Instruction Set Design Issuesg

• Instruction set design issues include:g
– Where are operands stored?

» registers, memory, stack, accumulator

– How many explicit operands are there?

» 0, 1, 2, or 3

– How is the operand location specified?– How is the operand location specified?

» register, immediate, indirect, . . .

– What type & size of operands are supported?

» byte, int, float, double, string, vector. . .

– What operations are supported?

dd b l» add, sub, mul, move, compare . . .

ISACSCE430/830

Evolution of Instruction Sets
Single Accumulator (EDSAC 1950, Maurice Wilkes)

Accumulator + Index RegistersAccumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecturep

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

CISC

ISACSCE430/830

(MIPS,Sparc,HP-PA,IBM RS6000,PowerPC . . .1987)Intel x86, Pentium

Classifying ISAs
Accumulator (before 1960, e.g. 68HC11):

1-address add A acc ← acc + mem[A]

Stack (1960s to 1970s):
0-address add tos ← tos + next

Memory-Memory (1970s to 1980s):
2-address add A, B mem[A] ← mem[A] + mem[B]
3-address add A, B, C mem[A] ← mem[B] + mem[C]3 address add A, B, C mem[A] ← mem[B] mem[C]

Register-Memory (1970s to present, e.g. 80x86):
2-address add R1, A R1 ← R1 + mem[A]2 address add R1, A R1 ← R1 + mem[A]

load R1, A R1 ← mem[A]

Register-Register (Load/Store) (1960s to present, e.g. MIPS):Register Register (Load/Store) (1960s to present, e.g. MIPS):
3-address add R1, R2, R3 R1 ← R2 + R3

load R1, R2 R1 ← mem[R2]
store R1, R2 mem[R1] ← R2

ISACSCE430/830

, []

Operand Locations in Four ISA Classes
GPRGPR

ISACSCE430/830

Code Sequence C = A + B Code Sequence C = A + B
for Four Instruction Setsfor Four Instruction Setsfor Four Instruction Setsfor Four Instruction Sets

Stack Accumulator Register Register (load-

(register-memory) store)

Push A Load A Load R1, A Load R1,A

Push B

Add

Pop C

Add B

Store C

Add R1, B

Store C, R1

Load R2, B

Add R3, R1, R2

Store C R3Pop C Store C, R3

ISACSCE430/830
memory memory

acc = acc + mem[C] R1 = R1 + mem[C] R3 = R1 + R2

More About General Purpose Registersp g

• Why do almost all new architectures use
GPRs?GPRs?
– Registers are much faster than memory (even cache)

» Register values are available immediatelyg y

» When memory isn’t ready, processor must wait
(“stall”)

– Registers are convenient for variable storageRegisters are convenient for variable storage

» Compiler assigns some variables just to registers

» More compact code since small fields specify
registersregisters
(compared to memory addresses)

Registers Cache

MemoryProcessor Disk
Registers Cache

ISACSCE430/830

Stack Architectures

• Instruction set:
add, sub, mult, div, . . .

push A, pop A

• Example: A*B - (A+C*B)
h Apush A

push B

mul

A B
A

A*B
A*B

A*B
A*B

A
A
C

A*B
A A*B

A C B B*C A+B*C result

mul

push A

push C

A*B

push B

mul

add

ISACSCE430/830

add

sub

Stacks: Pros and ConsStacks: Pros and Cons

• Pros
– Good code density (implicit top of stack)

h d i– Low hardware requirements
– Easy to write a simpler compiler for stack architectures

• Cons
– Stack becomes the bottleneck
– Little ability for parallelism or pipelining
– Data is not always at the top of stack when need, so

additional instructions like TOP and SWAP are neededadd t o a st uct o s e O a d S a e eeded
– Difficult to write an optimizing compiler for stack

architectures

ISACSCE430/830

Accumulator Architectures

• Instruction set:
add A, sub A, mult A, div A, . . .

load A, store A

• Example: A*B - (A+C*B)
l d B

acc = acc +,-,*,/ mem[A]

load B

mul C

add A

B B*C A+B*C AA+B*C A*B result

add A

store D

load A

mul B

sub D

ISACSCE430/830

Accumulators: Pros and ConsAccumulators: Pros and Cons

• Pros
– Very low hardware requirementsVery low hardware requirements

– Easy to design and understand

• Cons
– Accumulator becomes the bottleneck

– Little ability for parallelism or pipelining

– High memory traffic

ISACSCE430/830

Memory-Memory ArchitecturesMemory Memory Architectures

• Instruction set:
(3 operands) add A, B, C sub A, B, C mul A, B, C

(2 operands) add A B sub A B mul A B(2 operands) add A, B sub A, B mul A, B

• Example: A*B - (A+C*B)p ()
– 3 operands 2 operands

mul D, A, B mov D, A

mul E C B mul D Bmul E, C, B mul D, B

add E, A, E mov E, C

sub E, D, E mul E, B

add E, A

sub E, D

ISACSCE430/830

Memory-Memory:y y
Pros and Cons

• Pros
R i f i t ti (i ll if 3 d)– Requires fewer instructions (especially if 3 operands)

– Easy to write compilers for (especially if 3 operands)

• Cons
– Very high memory traffic (especially if 3 operands)Very high memory traffic (especially if 3 operands)

– Variable number of clocks per instruction

– With two operands, more data movements are required

ISACSCE430/830

Register-Memory ArchitecturesRegister Memory Architectures

• Instruction set:• Instruction set:
add R1, A sub R1, A mul R1, B

load R1 A store R1 Aload R1, A store R1, A

• Example: A*B - (A+C*B)Example: A B (A+C B)
load R1, A

mul R1, B /* A*B */

R1 = R1 +,-,*,/ mem[B]

store R1, D

load R2, C

mul R2, B /* C*B */

add R2, A /* A + CB */

sub R2 D /* AB - (A + C*B) */

ISACSCE430/830

sub R2, D / AB - (A + C B) /

Memory-Register:Memory Register:
Pros and Cons

• Pros
S d t b d ith t l di fi t– Some data can be accessed without loading first

– Instruction format easy to encode

– Good code densityGood code density

• ConsCons
– Operands are not equivalent (poor orthogonal)

– Variable number of clocks per instruction

– May limit number of registers

ISACSCE430/830

Load Store ArchitecturesLoad-Store Architectures

I t ti t• Instruction set:
add R1, R2, R3 sub R1, R2, R3 mul R1, R2, R3
load R1, &A store R1, &A move R1, R2, , ,

• Example: A*B - (A+C*B)
l d R1 &Aload R1, &A
load R2, &B
load R3, &C

R3 = R1 +,-,*,/ R2

mul R7, R3, R2 /* C*B */
add R8, R7, R1 /* A + C*B */
mul R9, R1, R2 /* A*B */, ,
sub R10, R9, R8 /* A*B - (A+C*B) */

ISACSCE430/830

Load-Store:Load Store:
Pros and Cons

• Pros
Si l fi d l th i t ti di– Simple, fixed length instruction encodings

– Instructions take similar number of cycles

– Relatively easy to pipeline and make superscalarRelatively easy to pipeline and make superscalar

• ConsCons
– Higher instruction count

– Not all instructions need three operands

– Dependent on good compiler

ISACSCE430/830

Registers:
Ad t d Di d tAdvantages and Disadvantages

• AdvantagesAdvantages
– Faster than cache or main memory (no addressing mode or tags)

– Deterministic (no misses)

– Can replicate (multiple read ports)

– Short identifier (typically 3 to 8 bits)

– Reduce memory trafficy

• Disadvantages
– Need to save and restore on procedure calls and context switch

– Can’t take the address of a register (for pointers)

– Fixed size (can’t store strings or structures efficiently)Fixed size (can t store strings or structures efficiently)

– Compiler must manage

– Limited number

ISACSCE430/830

Every ISA designed after 1980 uses a load-store ISA (i.e
RISC, to simplify CPU design).

Word-Oriented Memory
OrganizationOrganization

0000

32-bit
Words

Bytes Addr.64-bit
Words

• Memory is byte addressed
and provides access for bytes
(8 bits), half words (16 bits),

0000
0001
0002
0003Addr

Addr
=

??0000
(), (),
words (32 bits), and double
words(64 bits).

0003
0004
0005

Addr
=

??
Addr

=

0000

• Addresses Specify Byte
Locations

Add f fi t b t i d

0006
0007
0008

??

Add

0004

– Address of first byte in word

– Addresses of successive words
differ by 4 (32-bit) or 8 (64-bit)

0009
0010
0011Addr

=

Addr
=

??0008

0012
0013
0014

??
Addr

=
??0012

0008

ISACSCE430/830

0014
0015

??0012

Byte Ordering

• How should bytes within multi-byte word be
ordered in memory?ordered in memory?

• Conventions
– Sun’s, Mac’s are “Big Endian” machines, g

» Least significant byte has highest address

– Alphas, PC’s are “Little Endian” machines

» Least significant byte has lowest address» Least significant byte has lowest address

ISACSCE430/830

Byte Ordering Example

• Big Endian
– Least significant byte has highest address– Least significant byte has highest address

• Little Endian
– Least significant byte has lowest addressg y

• Example
– Variable x has 4-byte representation 0x01234567
– Address given by &x is 0x100

0x100 0x101 0x102 0x103
01 23 45 67

Big Endian
01 23 45 6701 23 45 67

0x100 0x101 0x102 0x103
67 45 23 01

Little Endian

01 23 45 67

67 45 23 01

ISACSCE430/830

67 45 23 0167 45 23 01

Reading Byte-Reversed ListingsReading Byte Reversed Listings

• Disassembly
T t t ti f bi hi d– Text representation of binary machine code

– Generated by program that reads the machine code

• Example FragmentExample Fragment

Address Instruction Code Assembly Rendition
8048365 5b % b8048365: 5b pop %ebx
8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx
804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

• Deciphering Numbers
– Value: 0x12ab
– Pad to 4 bytes: 0x000012ab
– Split into bytes: 00 00 12 ab
– Reverse: ab 12 00 00

ISACSCE430/830

Types of Addressing Modes (VAX)
Add i M d E l A tiAddressing Mode Example Action

1. Register direct Add R4, R3 R4 <- R4 + R3

2 Immediate Add R4 #3 R4 <- R4 + 32. Immediate Add R4, #3 R4 < R4 + 3

3. Displacement Add R4, 100(R1) R4 <- R4 + M[100 + R1]

4. Register indirect Add R4, (R1) R4 <- R4 + M[R1]

5. Indexed Add R4, (R1 + R2) R4 <- R4 + M[R1 + R2]

6. Direct Add R4, (1000) R4 <- R4 + M[1000]

7 M I di t Add R4 @(R3) R4 < R4 M[M[R3]]7. Memory Indirect Add R4, @(R3) R4 <- R4 + M[M[R3]]

8. Autoincrement Add R4, (R2)+ R4 <- R4 + M[R2]

R2 <- R2 + dR2 < R2 + d

9. Autodecrement Add R4, (R2)- R4 <- R4 + M[R2]

R2 <- R2 - d

10. Scaled Add R4, 100(R2)[R3] R4 <- R4 +

M[100 + R2 + R3*d]

St di b [Cl k d E] i di t th t d 1 4 t f

ISACSCE430/830

• Studies by [Clark and Emer] indicate that modes 1-4 account for
93% of all operands on the VAX.

Types of Operations

• Arithmetic and Logic: AND, ADD

Data Transfer: MOVE LOAD STORE• Data Transfer: MOVE, LOAD, STORE

• Control BRANCH, JUMP, CALL

S t OS CALL VM• System OS CALL, VM

• Floating Point ADDF, MULF, DIVF

D i l ADDD CONVERT• Decimal ADDD, CONVERT

• String MOVE, COMPARE

G hi (DE)COMPRESS• Graphics (DE)COMPRESS

ISACSCE430/830

80x86 Instruction Frequency

Rank Instruction FrequencyRank Instruction Frequency
1 load 22%
2 branch 20%2 branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 s b 5%7 sub 5%
8 register move 4%

9

9 call 1%9 call 1%
10 return 1%

Total 96%

ISACSCE430/830

Relative Frequency of
Control Instructions Co t o st uct o s

Operation SPECint92 SPECfp92Operation SPECint92 SPECfp92
Call/Return 13% 11%

Jumps 6% 4%p
Branches 81% 87%

• Design hardware to handle branches
quickly, since these occur most frequently

ISACSCE430/830

Summery

I t ti S t O i• Instruction Set Overview
– Classifying Instruction Set Architectures (ISAs)

– Memory AddressingMemory Addressing

– Types of Instructions

• MIPS Instruction Set (Topic of next class)
– Overview

– Registers and Memory

– InstructionsInstructions

ISACSCE430/830

