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Outline
• Computer Science at a Crossroads
• Computer Architecture v. Instruction Set Arch.
• What Computer Architecture brings to table
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• Old Conventional Wisdom: Power is free, Transistors expensive
• New Conventional Wisdom: “Power wall” Power expensive, Xtors free 

(Can put more on chip than can afford to turn on)
• Old CW: Sufficiently increasing Instruction Level Parallelism via 

compilers, innovation (Out-of-order, speculation, VLIW, …)
• New CW: “ILP wall” law of diminishing returns on more HW for ILP 
• Old CW: Multiplies are slow, Memory access is fast
• New CW: “Memory wall” Memory slow, multiplies fast

(200 clock cycles to DRAM memory, 4 clocks for multiply)
• Old CW: Uniprocessor performance 2X / 1.5 yrs
• New CW: Power Wall + ILP Wall + Memory Wall = Brick Wall

– Uniprocessor performance now 2X / 5(?) yrs

⇒ Sea change in chip design: multiple “cores”
(2X processors per chip / ~ 2 years)
» More simpler processors are more power efficient

Crossroads: Conventional Wisdom in Comp. Arch
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Crossroads: Uniprocessor Performance

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer 
Architecture: A Quantitative Approach, 4th 
edition, October, 2006
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Sea Change in Chip Design
• Intel 4004 (1971): 4-bit processor,

2312 transistors, 0.4 MHz, 
10 micron PMOS, 11 mm2 chip 

• Processor is the new transistor?

• RISC II (1983): 32-bit, 5 stage 
pipeline, 40,760 transistors, 3 MHz, 
3 micron NMOS, 60 mm2 chip

• 125 mm2 chip, 0.065 micron CMOS 
= 2312 RISC II+FPU+Icache+Dcache

– RISC II shrinks to ~ 0.02 mm2 at 65 nm
– Caches via DRAM or 1 transistor SRAM (www.t-ram.com) ?
– Proximity Communication via capacitive coupling at > 1 TB/s ?

(Ivan Sutherland @ Sun / Berkeley)
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Déjà vu all over again?

• Multiprocessors imminent in 1970s, ‘80s, ‘90s, …
• “… today’s processors … are nearing an impasse as 

technologies approach the speed of light..”
David Mitchell, The Transputer: The Time Is Now (1989)

• Transputer was premature 
⇒ Custom multiprocessors strove to lead uniprocessors
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years

• “We are dedicating all of our future product development to 
multicore designs. … This is a sea change in computing”

Paul Otellini, President, Intel (2004) 
• Difference is all microprocessor companies switch to 

multiprocessors (AMD, Intel, IBM, Sun; all new Apples 2 CPUs) 
⇒ Procrastination penalized: 2X sequential perf. / 5 yrs
⇒ Biggest programming challenge: 1 to 2 CPUs
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Problems with Sea Change 

• Algorithms, Programming Languages, Compilers, 
Operating Systems, Architectures, Libraries, … not 
ready to supply Thread Level Parallelism or Data 
Level Parallelism for 1000 CPUs / chip, 

• Architectures not ready for 1000 CPUs / chip
• Unlike Instruction Level Parallelism, cannot be solved by just by 

computer architects and compiler writers alone, but also cannot 
be solved without participation of computer architects

• This edition of CS 252 (and 4th Edition of textbook 
Computer Architecture: A Quantitative Approach) 
explores shift from Instruction Level Parallelism to 
Thread Level Parallelism / Data Level Parallelism
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ISA vs. Computer Architecture
• Old definition of computer architecture 

= instruction set design 
– Other aspects of computer design called implementation  
– Insinuates implementation is uninteresting or less challenging

• Our view is computer architecture >> ISA
• Architect’s job much more than instruction set 

design; technical hurdles today more challenging 
than those in instruction set design

• Since instruction set design not where action is, 
some conclude computer architecture (using old 
definition) is not where action is

– We disagree on conclusion
– Agree that ISA not where action is (ISA in CA:AQA 4/e appendix)
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Comp. Arch. is an Integrated Approach 

• What really matters is the functioning of the complete 
system 

– hardware, runtime system, compiler, operating system, and 
application

– In networking, this is called the “End to End argument”

• Computer architecture is not just about transistors, 
individual instructions, or particular implementations

– E.g., Original RISC projects replaced complex instructions with a 
compiler + simple instructions
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New Project opportunity this semester

• FPGAs as New Research Platform
• As ~ 25 CPUs can fit in Field Programmable 

Gate Array (FPGA), 1000-CPU system from 
~ 40 FPGAs?

• 64-bit simple “soft core” RISC at 100MHz in 2004 (Virtex-II)
• FPGA generations every 1.5 yrs; 2X CPUs, 2X clock rate

• HW research community does logic design 
(“gate shareware”) to create out-of-the-box, 
Massively Parallel Processor runs standard 
binaries of OS, apps

– Gateware: Processors, Caches, Coherency, Ethernet 
Interfaces, Switches, Routers, … (IBM, Sun have donated 
processors)

– E.g., 1000 processor, IBM Power binary-compatible, cache-
coherent supercomputer @ 200 MHz; fast enough for research
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RAMP

• Since goal is to ramp up research in 
multiprocessing, called Research 
Accelerator for Multiple Processors

– To learn more, read “RAMP: Research 
Accelerator for Multiple Processors - A 
Community Vision for a Shared Experimental 
Parallel HW/SW Platform,” Technical Report 
UCB//CSD-05-1412, Sept 2005

– Web page ramp.eecs.berkeley.edu
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Why RAMP Good for Research? 
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• Completed Dec. 2004 (14x17 inch 22-layer PCB)
• Module:

– FPGAs, memory, 
10GigE conn.

– Compact Flash
– Administration/

maintenance 
ports:

» 10/100 Enet
» HDMI/DVI
» USB

– ~4K/module w/o 
FPGAs or DRAM

RAMP 1 Hardware

Called “BEE2” for Berkeley Emulation Engine 2
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Multiple Module RAMP 1 Systems

• 8 compute modules (plus power 
supplies) in 8U rack mount chassis

– 500-1000 emulated processors

• Many topologies possible
• 2U single module tray for developers
• Disk storage: disk emulator + Network 

Attached Storage
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Vision: Multiprocessing Watering Hole

• RAMP attracts many communities to shared artifact 
⇒ Cross-disciplinary interactions 
⇒ Accelerate innovation in multiprocessing

• RAMP as next Standard Research Platform? 
(e.g., VAX/BSD Unix in 1980s, x86/Linux in 1990s) 

RAMPRAMP

Parallel file system
Thread scheduling

Multiprocessor switch design
Fault insertion to check dependability

Data center in a box
Internet in a box

Dataflow language/computer
Security enhancements

Router design Compile to FPGA
Parallel languages
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What Computer Architecture brings to Table
• Other fields often borrow ideas from architecture
• Quantitative Principles of Design

1. Take Advantage of Parallelism
2. Principle of Locality
3. Focus on the Common Case
4. Amdahl’s Law
5. The Processor Performance Equation

• Careful, quantitative comparisons
– Define, quantity, and summarize relative performance
– Define and quantity relative cost
– Define and quantity dependability
– Define and quantity power

• Culture of anticipating and exploiting advances in 
technology

• Culture of well-defined interfaces that are carefully 
implemented and thoroughly checked
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1) Taking Advantage of Parallelism
• Increasing throughput of server computer via 

multiple processors or multiple disks
• Detailed HW design

– Carry lookahead adders uses parallelism to speed up computing 
sums from linear to logarithmic in number of bits per operand

– Multiple memory banks searched in parallel in set-associative 
caches

• Pipelining: overlap instruction execution to reduce 
the total time to complete an instruction sequence.

– Not every instruction depends on immediate predecessor ⇒
executing instructions completely/partially in parallel possible

– Classic 5-stage pipeline: 
1) Instruction Fetch (Ifetch), 
2) Register Read (Reg), 
3) Execute (ALU), 
4) Data Memory Access (Dmem), 
5) Register Write (Reg)
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Pipelined Instruction Execution
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Limits to pipelining

• Hazards prevent next instruction from executing 
during its designated clock cycle

– Structural hazards: attempt to use the same hardware to do 
two different things at once

– Data hazards: Instruction depends on result of prior 
instruction still in the pipeline

– Control hazards: Caused by delay between the fetching of 
instructions and decisions about changes in control flow 
(branches and jumps).
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2) The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at 

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will 

tend to be referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced, items 

whose addresses are close by tend to be referenced soon 
(e.g., straight-line code, array access)

• Last 30 years, HW  relied on locality for memory perf.

P MEM$
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Levels of the Memory Hierarchy

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Disk
10s T Bytes, 10 ms 
(10,000,000 ns)
~ $1 / GByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
~$1 / GByte

Registers

L1 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
32-64 bytes

OS
4K-8K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

L2 Cache
cache cntl
64-128 bytesBlocks
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3) Focus on the Common Case
• Common sense guides computer design

– Since its engineering, common sense is valuable
• In making a design trade-off, favor the frequent 

case over the infrequent case
– E.g., Instruction fetch and decode unit used more frequently 

than multiplier, so optimize it 1st
– E.g., If database server has 50 disks / processor, storage 

dependability dominates system dependability, so optimize it 1st
• Frequent case is often simpler and can be done 

faster than the infrequent case
– E.g., overflow is rare when adding 2 numbers, so improve 

performance by optimizing more common case of no overflow 
– May slow down overflow, but overall performance improved by 

optimizing for the normal case
• What is frequent case and how much performance 

improved by making case faster => Amdahl’s Law
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4) Amdahl’s Law
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Amdahl’s Law example
• New CPU 10X faster
• I/O bound server, so 60% time waiting for I/O
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• Apparently, its human nature to be attracted by 10X 
faster, vs. keeping in perspective its just 1.6X faster
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5) Processor performance equation

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds
Program Program          Instruction       Cycle

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds
Program Program          Instruction       Cycle

Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time
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What’s a Clock Cycle?

• Old days: 10 levels of gates
• Today: determined by numerous time-of-flight 

issues + gate delays
– clock propagation, wire lengths, drivers

Latch
or

register

combinational
logic


