
EECS 252 Graduate Computer
Architecture

Lec 1 - Introduction

David Patterson
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~pattrsn
http://www-inst.eecs.berkeley.edu/~cs252

4/16/2008 CS252-s06, Lec 01-intro 3

Outline
• Computer Science at a Crossroads
• Computer Architecture v. Instruction Set Arch.
• What Computer Architecture brings to table

4/16/2008 CS252-s06, Lec 01-intro 4

• Old Conventional Wisdom: Power is free, Transistors expensive
• New Conventional Wisdom: “Power wall” Power expensive, Xtors free

(Can put more on chip than can afford to turn on)
• Old CW: Sufficiently increasing Instruction Level Parallelism via

compilers, innovation (Out-of-order, speculation, VLIW, …)
• New CW: “ILP wall” law of diminishing returns on more HW for ILP
• Old CW: Multiplies are slow, Memory access is fast
• New CW: “Memory wall” Memory slow, multiplies fast

(200 clock cycles to DRAM memory, 4 clocks for multiply)
• Old CW: Uniprocessor performance 2X / 1.5 yrs
• New CW: Power Wall + ILP Wall + Memory Wall = Brick Wall

– Uniprocessor performance now 2X / 5(?) yrs

⇒ Sea change in chip design: multiple “cores”
(2X processors per chip / ~ 2 years)
» More simpler processors are more power efficient

Crossroads: Conventional Wisdom in Comp. Arch

4/16/2008 CS252-s06, Lec 01-intro 5

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

Crossroads: Uniprocessor Performance

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th
edition, October, 2006

4/16/2008 CS252-s06, Lec 01-intro 6

Sea Change in Chip Design
• Intel 4004 (1971): 4-bit processor,

2312 transistors, 0.4 MHz,
10 micron PMOS, 11 mm2 chip

• Processor is the new transistor?

• RISC II (1983): 32-bit, 5 stage
pipeline, 40,760 transistors, 3 MHz,
3 micron NMOS, 60 mm2 chip

• 125 mm2 chip, 0.065 micron CMOS
= 2312 RISC II+FPU+Icache+Dcache

– RISC II shrinks to ~ 0.02 mm2 at 65 nm
– Caches via DRAM or 1 transistor SRAM (www.t-ram.com) ?
– Proximity Communication via capacitive coupling at > 1 TB/s ?

(Ivan Sutherland @ Sun / Berkeley)

4/16/2008 CS252-s06, Lec 01-intro 7

Déjà vu all over again?

• Multiprocessors imminent in 1970s, ‘80s, ‘90s, …
• “… today’s processors … are nearing an impasse as

technologies approach the speed of light..”
David Mitchell, The Transputer: The Time Is Now (1989)

• Transputer was premature
⇒ Custom multiprocessors strove to lead uniprocessors
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years

• “We are dedicating all of our future product development to
multicore designs. … This is a sea change in computing”

Paul Otellini, President, Intel (2004)
• Difference is all microprocessor companies switch to

multiprocessors (AMD, Intel, IBM, Sun; all new Apples 2 CPUs)
⇒ Procrastination penalized: 2X sequential perf. / 5 yrs
⇒ Biggest programming challenge: 1 to 2 CPUs

4/16/2008 CS252-s06, Lec 01-intro 8

Problems with Sea Change

• Algorithms, Programming Languages, Compilers,
Operating Systems, Architectures, Libraries, … not
ready to supply Thread Level Parallelism or Data
Level Parallelism for 1000 CPUs / chip,

• Architectures not ready for 1000 CPUs / chip
• Unlike Instruction Level Parallelism, cannot be solved by just by

computer architects and compiler writers alone, but also cannot
be solved without participation of computer architects

• This edition of CS 252 (and 4th Edition of textbook
Computer Architecture: A Quantitative Approach)
explores shift from Instruction Level Parallelism to
Thread Level Parallelism / Data Level Parallelism

4/16/2008 CS252-s06, Lec 01-intro 13

ISA vs. Computer Architecture
• Old definition of computer architecture

= instruction set design
– Other aspects of computer design called implementation
– Insinuates implementation is uninteresting or less challenging

• Our view is computer architecture >> ISA
• Architect’s job much more than instruction set

design; technical hurdles today more challenging
than those in instruction set design

• Since instruction set design not where action is,
some conclude computer architecture (using old
definition) is not where action is

– We disagree on conclusion
– Agree that ISA not where action is (ISA in CA:AQA 4/e appendix)

4/16/2008 CS252-s06, Lec 01-intro 14

Comp. Arch. is an Integrated Approach

• What really matters is the functioning of the complete
system

– hardware, runtime system, compiler, operating system, and
application

– In networking, this is called the “End to End argument”

• Computer architecture is not just about transistors,
individual instructions, or particular implementations

– E.g., Original RISC projects replaced complex instructions with a
compiler + simple instructions

4/16/2008 CS252-s06, Lec 01-intro 26

New Project opportunity this semester

• FPGAs as New Research Platform
• As ~ 25 CPUs can fit in Field Programmable

Gate Array (FPGA), 1000-CPU system from
~ 40 FPGAs?

• 64-bit simple “soft core” RISC at 100MHz in 2004 (Virtex-II)
• FPGA generations every 1.5 yrs; 2X CPUs, 2X clock rate

• HW research community does logic design
(“gate shareware”) to create out-of-the-box,
Massively Parallel Processor runs standard
binaries of OS, apps

– Gateware: Processors, Caches, Coherency, Ethernet
Interfaces, Switches, Routers, … (IBM, Sun have donated
processors)

– E.g., 1000 processor, IBM Power binary-compatible, cache-
coherent supercomputer @ 200 MHz; fast enough for research

4/16/2008 CS252-s06, Lec 01-intro 27

RAMP

• Since goal is to ramp up research in
multiprocessing, called Research
Accelerator for Multiple Processors

– To learn more, read “RAMP: Research
Accelerator for Multiple Processors - A
Community Vision for a Shared Experimental
Parallel HW/SW Platform,” Technical Report
UCB//CSD-05-1412, Sept 2005

– Web page ramp.eecs.berkeley.edu

4/16/2008 CS252-s06, Lec 01-intro 28

Why RAMP Good for Research?

A (1.5 kw,
0.3 racks)

A+ (.1 kw,
0.1 racks)

D (120 kw,
12 racks)

D (120 kw, 12
racks)

Power/Space
(kilowatts, racks)

AAADCommunity

AAACScalability

AADACost of ownership

GPA

Perform. (clock)

Credibility

Flexibility

Reproducibility

Observability

Cost (1000 CPUs)

C

A (2 GHz)

A+

D

B

D

F ($40M)

SMP

B-

A (3 GHz)

A+

C

D

C

C ($2M)

Cluster

B

F (0 GHz)

F

A+

A+

A+

A+ ($0M)

Simulate

A-

C (0.2 GHz)

A

A+

A+

A+

A ($0.1M)

RAMP

4/16/2008 CS252-s06, Lec 01-intro 29

• Completed Dec. 2004 (14x17 inch 22-layer PCB)
• Module:

– FPGAs, memory,
10GigE conn.

– Compact Flash
– Administration/

maintenance
ports:

» 10/100 Enet
» HDMI/DVI
» USB

– ~4K/module w/o
FPGAs or DRAM

RAMP 1 Hardware

Called “BEE2” for Berkeley Emulation Engine 2
4/16/2008 CS252-s06, Lec 01-intro 30

Multiple Module RAMP 1 Systems

• 8 compute modules (plus power
supplies) in 8U rack mount chassis

– 500-1000 emulated processors

• Many topologies possible
• 2U single module tray for developers
• Disk storage: disk emulator + Network

Attached Storage

4/16/2008 CS252-s06, Lec 01-intro 31

Vision: Multiprocessing Watering Hole

• RAMP attracts many communities to shared artifact
⇒ Cross-disciplinary interactions
⇒ Accelerate innovation in multiprocessing

• RAMP as next Standard Research Platform?
(e.g., VAX/BSD Unix in 1980s, x86/Linux in 1990s)

RAMPRAMP

Parallel file system
Thread scheduling

Multiprocessor switch design
Fault insertion to check dependability

Data center in a box
Internet in a box

Dataflow language/computer
Security enhancements

Router design Compile to FPGA
Parallel languages

4/16/2008 CS252-s06, Lec 01-intro 37

What Computer Architecture brings to Table
• Other fields often borrow ideas from architecture
• Quantitative Principles of Design

1. Take Advantage of Parallelism
2. Principle of Locality
3. Focus on the Common Case
4. Amdahl’s Law
5. The Processor Performance Equation

• Careful, quantitative comparisons
– Define, quantity, and summarize relative performance
– Define and quantity relative cost
– Define and quantity dependability
– Define and quantity power

• Culture of anticipating and exploiting advances in
technology

• Culture of well-defined interfaces that are carefully
implemented and thoroughly checked

4/16/2008 CS252-s06, Lec 01-intro 38

1) Taking Advantage of Parallelism
• Increasing throughput of server computer via

multiple processors or multiple disks
• Detailed HW design

– Carry lookahead adders uses parallelism to speed up computing
sums from linear to logarithmic in number of bits per operand

– Multiple memory banks searched in parallel in set-associative
caches

• Pipelining: overlap instruction execution to reduce
the total time to complete an instruction sequence.

– Not every instruction depends on immediate predecessor ⇒
executing instructions completely/partially in parallel possible

– Classic 5-stage pipeline:
1) Instruction Fetch (Ifetch),
2) Register Read (Reg),
3) Execute (ALU),
4) Data Memory Access (Dmem),
5) Register Write (Reg)

4/16/2008 CS252-s06, Lec 01-intro 39

Pipelined Instruction Execution

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

4/16/2008 CS252-s06, Lec 01-intro 40

Limits to pipelining

• Hazards prevent next instruction from executing
during its designated clock cycle

– Structural hazards: attempt to use the same hardware to do
two different things at once

– Data hazards: Instruction depends on result of prior
instruction still in the pipeline

– Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow
(branches and jumps).

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

4/16/2008 CS252-s06, Lec 01-intro 41

2) The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced, items

whose addresses are close by tend to be referenced soon
(e.g., straight-line code, array access)

• Last 30 years, HW relied on locality for memory perf.

P MEM$

4/16/2008 CS252-s06, Lec 01-intro 42

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
~$1 / GByte

Registers

L1 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
32-64 bytes

OS
4K-8K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

L2 Cache
cache cntl
64-128 bytesBlocks

4/16/2008 CS252-s06, Lec 01-intro 43

3) Focus on the Common Case
• Common sense guides computer design

– Since its engineering, common sense is valuable
• In making a design trade-off, favor the frequent

case over the infrequent case
– E.g., Instruction fetch and decode unit used more frequently

than multiplier, so optimize it 1st
– E.g., If database server has 50 disks / processor, storage

dependability dominates system dependability, so optimize it 1st
• Frequent case is often simpler and can be done

faster than the infrequent case
– E.g., overflow is rare when adding 2 numbers, so improve

performance by optimizing more common case of no overflow
– May slow down overflow, but overall performance improved by

optimizing for the normal case
• What is frequent case and how much performance

improved by making case faster => Amdahl’s Law

4/16/2008 CS252-s06, Lec 01-intro 44

4) Amdahl’s Law

()
enhanced

enhanced
enhanced

new

old
overall

Speedup
Fraction Fraction

1
ExTime
ExTime Speedup

+−
==

1

Best you could ever hope to do:

()enhanced
maximum Fraction - 1

1 Speedup =

() ⎥
⎦

⎤
⎢
⎣

⎡
+−×=

enhanced

enhanced
enhancedoldnew Speedup

FractionFraction ExTime ExTime 1

4/16/2008 CS252-s06, Lec 01-intro 45

Amdahl’s Law example
• New CPU 10X faster
• I/O bound server, so 60% time waiting for I/O

()

()
56.1

64.0
1

10
0.4 0.4 1

1

Speedup
Fraction Fraction 1

1 Speedup

enhanced

enhanced
enhanced

overall

==
+−

=

+−
=

• Apparently, its human nature to be attracted by 10X
faster, vs. keeping in perspective its just 1.6X faster

4/16/2008 CS252-s06, Lec 01-intro 46

5) Processor performance equation

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time

4/16/2008 CS252-s06, Lec 01-intro 47

What’s a Clock Cycle?

• Old days: 10 levels of gates
• Today: determined by numerous time-of-flight

issues + gate delays
– clock propagation, wire lengths, drivers

Latch
or

register

combinational
logic

