

Aula 19: Barramentos de I/O RAID

Interconexão = interfaceia computador com os componentes do sistema de computação

- Interfaces em hardware de alta velocidade + protocolos
- Networks, channel, backplanes

	Network	Channel	Backplane
Distance	>1000 m	10 - 100 m	1 m
Bandwidth	10 - 100 Mb/s	40 - 1000 Mb/s	320 - 1000+ Mb/s
Latency	high (>ms)	medium	low (<µs)
Reliability	low Extensive CRC	medium Byte Parity	high Byte Parity
via de	dos em mensagen dados estreita igem distribuída	s	Mapeados em mem via de dados larga arbitragem centraliz

Arquiteturas de Backplane

Metric	VME	FutureBus	MultiBus II	SCSI-I
Bus Width (signals)	128	96	96	25
Address/Data Multiplexed?	No	Yes	Yes	na
Data Width	16 - 32	32	32	8
Xfer Size	Single/Multiple	Single/Multiple	Single/Multiple	Single/Multiple
# of Bus Masters	Multiple	Multiple	Multiple	Multiple
Split Transactions	No	Optional	Optional	Optional
Ĉlocking	Async	Ásync	Sync	Éither
Bandwidth, Single W ord (0 ns mem)	25	3 7	20	5, 1.5
Bandwidth, Single W ord (150 ns mem)	12.9	15.5	10	5, 1.5
Bandwidth Multiple W ord (0 ns mem)	27.9	95.2	40	5, 1.5
Bandwidth Multiple W ord (150 ns mem)	13.6	20.8	13.3	5, 1.5
Max # of devices	21	20	21	7
Max Bus Length	.5 m	.5 m	.5 m	25 m
Standard	IEEE 1014	IEEE 896	ANSI/IEEE 1296	ANSI X3.131

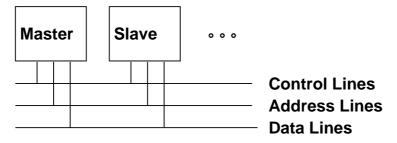
Observações:

SCSI channel funciona como um barramento

FutureBus funcional como um channel (disconnect/reconnect)

Interconexões Baseadas em Barramentos

- Barramento: meio de comunicação compartilhado entre subsistemas
 - Baixo custo: conjunto de fios compartilhados
 - Versatilidade: Fácil de adicionar novos dispositivos e periféricos
- Desvantagem
 - Limitação de velocidade de comunicação causa gargalo para throughput
- Velocidade de barramento é limitado por fatores físicos
 - Comprimento
 - Carga (número de dispositivos conectados)


Interconexões Baseadas em Barramentos

- Dois tipos genéricos:
 - Barramentos de I/O: longo, dispositivos de diversas velocidades e tipos e seguem um padrão de barramento
 - Barramentos CPU/memória: alta velocidade, maximiza BW entre CPU e memória
 - Para baixar custos, sistemas mais antigos combinavam os dois barramentos
- Transação de barramento é dividida em duas fases
 - Envio de endereço
 - Envio/recepção de dados

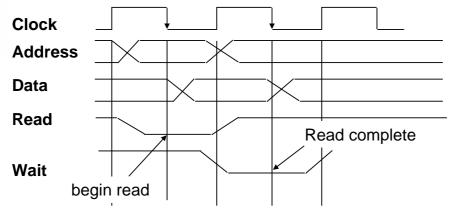
Protocolos de Barramento

Multibus: 20 endereço, 16 dados, 5 controle, 50ns Pausa

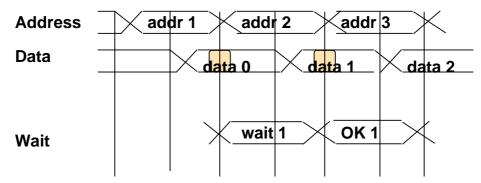
Bus Master: controla o barramento e inicia a transação

Bus Slave: ativado pela transação

Protocolo de comunicação: especificação de sequência de eventos e temporizações para transferir informação

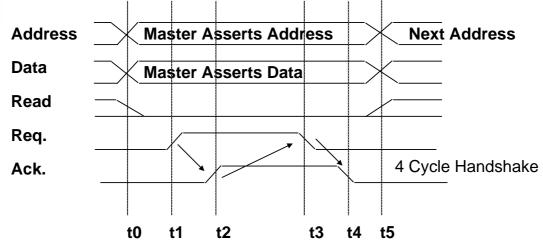

Transferências assíncronas: linhas de controle (req., ack.) servem para controlar a transação

Transferências síncronas: transação é controlada por um clock



Protocolos Síncronos

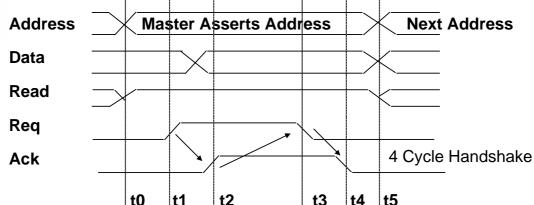
Pipelined/Split transaction Bus Protocol



Handshake Assíncrono

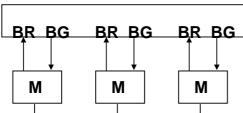
Transação de escrita

VERLab
Visão e Robótica

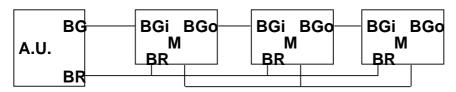


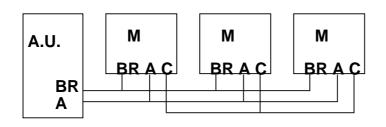
- t0 : Mestre obtém controle e envia endereço, direção e dado Aguarda um tempo para *target* decodificar endereço
- t1: Mestre asserts req.
- t2: Escravo asserts ack, indicando recebimento de dado
- t3: Mestre libera req
- t4: Escravo libera ack

Transação de Leitura



- t0 : Mestre obtém controle e envia endereço, direção e dado
 Aguarda um tempo para target decodificar endereço
- t1: Mestre asserts req.
- t2: Escravo asserts ack, indicando transmissão do dado
- t3: Mestre libera req, dado recebido
- t4: Escravo libera ack





BR = Bus Request BG = Bus Grant

Serial Arbitration (daisy chaining)

Polling

Opções de Barramento

Opção Alta performance Baixo custo

Bus width Endereço e dados Multiplexação das linhas

em linhas separadas de endereços e dados

Data width Largo é mais rápido Estreito é mais barato

(32 bits) (8 bits)

Transfer size Múltiplas palavras Uma palavra é mais simples

diminuem overhead

Bus masters Múltiplos Único

(requer arbitragem) (sem arbitragem)

Split Sim—envio e Não—conexão contínua

transaction? recepção aumenta BW é mais barato e possui

(requer múltiplos menor latência

mestres)

Clocking Síncrono Assíncrono

Barramentos 1990 (P&H, 1st Ed)

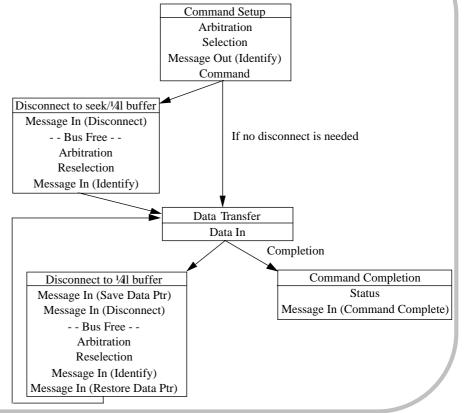
om	VME Fut	ureBus Mult	tibus II	IPI	SCSI
Signals	128	96	96	16	8
Addr/Data mux	no	yes	yes	n/a	n/a
Data width	16 - 32	32	32	16	8
Masters	multi	multi	multi	single	multi
Clocking	Async	Async	Sync	Async	either
MB/s (0ns, word) 2	25	37	20	25	1.5 (asyn)
					5 (sync)
150ns word	12.9	15.5	10	=	=
Ons block	27.9	95.2	40	=	=
150ns block	13.6	20.8	13.3	=	=
Max devices	21	20	21	8	7
Max meters	0.5	0.5	0.5	50	25
Standard IEEE 1014 IEEE 806.1 ANSI/IEEE ANSI X3.120 ANSI X3.131					

Standard IEEE 1014 IEEE 896.1 ANSI/IEEE ANSI X3.129 ANSI X3.131

VME

- 3 conectores de 96-pin
- 128 pinos definidos no padrão, restante definido por usuário
 - 32 pinos para endereço
 - 32 pinos para dados
 - 64 pinos para comando e linhas de alimentação

- Até 8 dispositivos comunicam-se em um barramento a velocidades de até 4-5 MBytes/sec
- SCSI-2 aumenta velocidade até 20 MB/sec
- Dispositivos podem ser escravos ("target") ou mestres ("initiator")
- Protocolo: sequência de fases, durante as quais ações são tomadas pelo controlador e dispositivos SCSI
 - Bus Free: Nenhum dispositivo está acessando o barramento
 - Arbitration: barramento está livre, logo múltiplos dispositivos podem requisitar o barramento utilizando prioridade fixa por endereço
 - Selection: Informa qual target irá ser utilizado (Reselection se desconectado)
 - Command: initiator lê bytes de comando da memória do host e envia comandos para target
 - Data Transfer: dados enviados entre initiator e target
 - Message Phase: mensagen enviada entre initiator e target (identify, save/restore data pointer, disconnect, command complete)

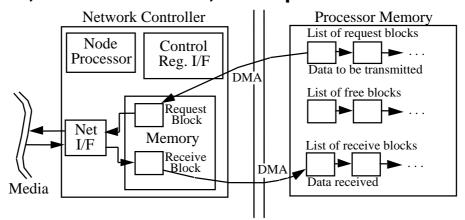

Status Phase: target, antes de completar comando

SCSI: Arquitetura

peer-to-peer protocols initiator/target linear byte streams disconnect/reconnect

Barramentos 1993 (P&H, 2nd Ed) Robotica

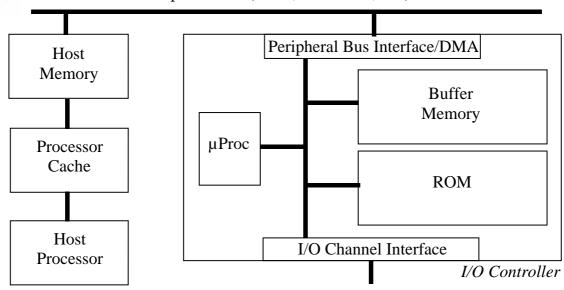
Lecom	CD	T 1 C1 1	M' Cl 1	DCI
Bus	SBus	TurboChannel	MicroChannel	PCI
Originator	Sun	DEC	IBM	Intel
Clock Rate (MHz)	16-25	12.5-25	async	33
Addressing	Virtual	Physical	Physical	Physical
Data Sizes (bits)	8,16,32	8,16,24,32	8,16,24,32,64	8,16,24,32,64
Master	Multi	Single	Multi	Multi
Arbitration	Central	Central	Central	Central
32 bit read (MB/s)	33	25	20	33
Peak (MB/s)	89	84	75	111 (222)
Max Power (W)	16	26	13	25


1993 Barramentos de Memória por Mires

			1
Bus	Summit	Challenge	XDBus
Originator	HP	SGI	Sun
Clock Rate (MHz)	60	48	66
Split transaction?	Yes	Yes	Yes?
Address lines	48	40	??
Data lines	128	256	144 (parity)
Data Sizes (bits)	512	1024	512
Clocks/transfer	4	5	4?
Peak (MB/s)	960	1200	1056
Master	Multi	Multi	Multi
Arbitration	Central	Central	Central
Addressing	Physical	Physical	Physical
Slots	16	9	10
Busses/system	1	1	2
Length	13 inches	12? inches	17 inches

Redes de Comunicação

Limitação de performance é devida a transferências de memória, overhead de OS, e não protocolos



Peripheral Backplane Bus

- Filas de envio e recepção na memória do computador
- Controlador de rede copia dados via DMA
- Host não participa do controle
- Causa interrupção ao final da transação

Peripheral Bus (VME, FutureBus, etc.)

Request/response block interface

Backdoor access to host memory

Limite de performance: cópias múltiplas, hierarquia complexa

de I/O

Memory-to-Memory Copy—	ApplicationAddress Space	↑ Host Processor
, , , , , ,	OS Buffers (>10 MByte)	↓ ↓
DMAover Peripheral Bus —	HBABuffers (1 M - 4 MBytes)	I/O Controller
Xfer over Disk Channel —	Track Buffers (32K - 256KBytes)	Embedded Controller
Xfer over Serial Interface —	I/O Device	Head/DiskAssembly

Armazenamento sobre Rede

Decreasing Disk Diameters

14" » 10" » 8" » 5.25" » 3.5" » 2.5" » 1.8" » 1.3" » . . .

Rede fornece interfaces lógicas e físicas bem definidas: por que não separar CPU de sistema de armazenamento?

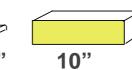
Serviço de Armazenamento sobre rede de alta velocidade

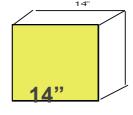
Network File Services

OS suportando acesso remoto

3 Mb/s » 10Mb/s » 50 Mb/s » 100 Mb/s » 1 Gb/s » 10 Gb/s rede capaz de sustentar transferências de alto BW

Increasing Network Bandwidth

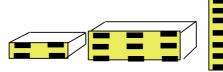


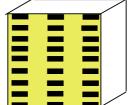

Disk Product Families

Conventional: 4 disk

designs

5.25"





Low End → High End

Disk Array: 1 disk design

3.5"

Troca de Pequeno # de Discos

Grandes por Grande # de Discos pequenos!

	IBM 3390 (K)	IBM 3.5" 0061	x70
Data Capacity	20 GBytes	320 MBytes	23 GBytes
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft.
Power	3 KW	11 W	1 KW
Data Rate	15 MB/s	1.5 MB/s	120 MB/s
I/O Rate	600 I/Os/s	55 I/Os/s	3900 IOs/s
MTTF	250 KHrs	50 KHrs	??? Hrs
Cost	\$250K	\$2K	\$150K

Disk Array tem o potencial pará

∕ taxa alta de dados e I/O −alta densidade, baixa potência ` reliability baixa

Redundant Arrays of Disks

• Redundância leval a alta disponibilidade

Discos vão eventualmente falhar

Técnicas:

Conteúdo pode ser reconstruído por dados armazenados c/ redundância no array

- → Capacidade reduz devido a redundância
- BW reduz devido aos múltiplos acessos que serão necessários

Espelhamento (alto custo em capacidade)

Hamming Codes (custo muito alto)

Paridade & Códigos Reed-Solomon

Reliability do Array

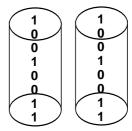
Reliability de N discos = Reliability de 1 disco ÷ N

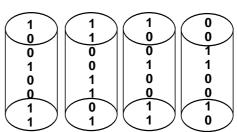
50,000 Horas ÷ 70 discos = 700 horas

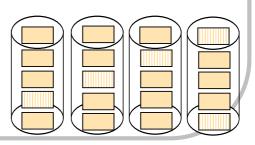
MTTF do sistema de discos: cai de 6 anos para 1 mês!

 Arrays sem redundância não tem reliability para serem úteis!

Redundant Arrays of Disks

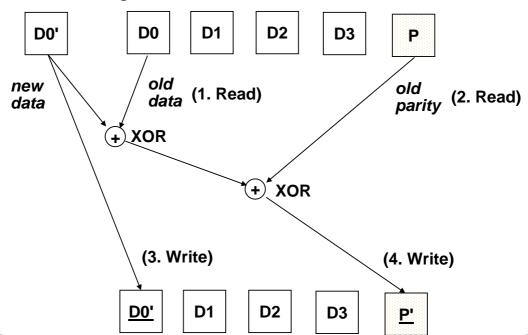



(RAID)

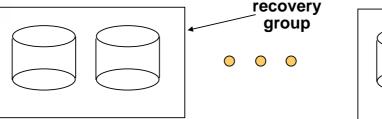

Espelhamento de disco
 Cada disco é duplicado em disco de proteção
 escrita lógica = duas escritas físicas

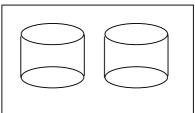
100% de overhead

- Parity Data Bandwidth Array
 Paridade calculada horizontalmente
 um disco com alto BW
- High I/O Rate Parity Array
 Blocos de paridade intercalados
 leituras e escritas independentes
 escrita lógica = 2 leituras + 2 escritas
 paridade

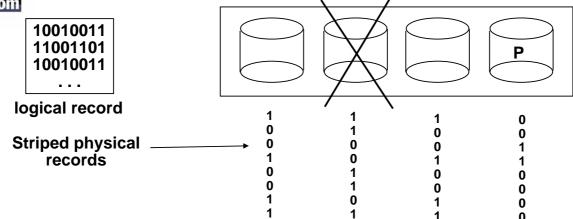


RAID-5: Small Write Algorithm

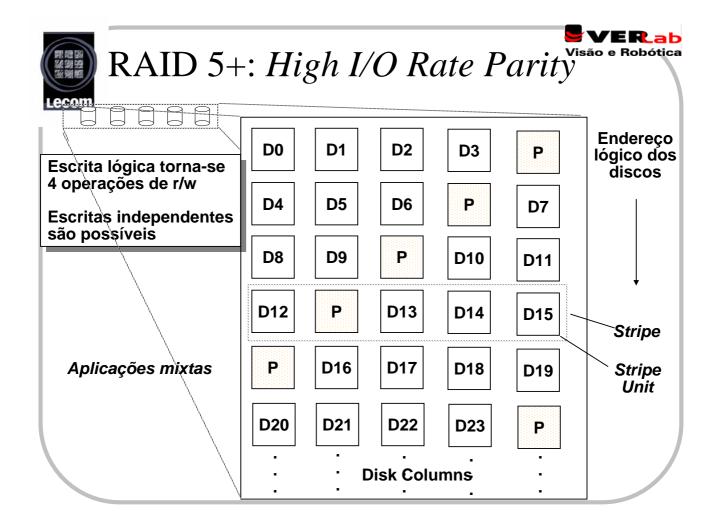

1 escrita lógica = 2 leituras + 2 escritas

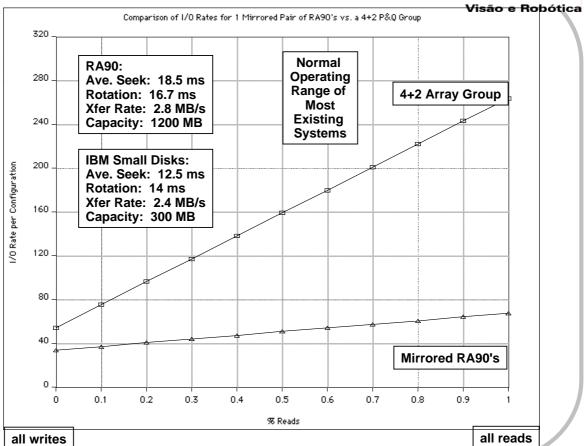


RAID 1: Espelhamento


- Cada disco é copiado inteiramente em imagem Disponibilidade é alta
- Sacrifício em BW: escrita lógica = duas escritas físicas
- Leituras podem ser otimizadas
- cara: 100% de overhead de capacidade

Destinados para I/O rate alto com alta disponibilidade


RAID 3: Disco de Paridade



- Paridade calculada para todo o grupo para evitar falhas 33% a mais sobre custo da capacidade
- Se todos os braços sincronizados logicamente => alta capacidade, alta velocidade

Aplicações: Científica, PDI

