

Aula 01: Introdução

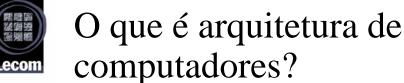
• Arquitetura de Computadores

Mario F. Montenegro Campos ICEx 4013 - mario@dcc.ufmg.br

LECOM

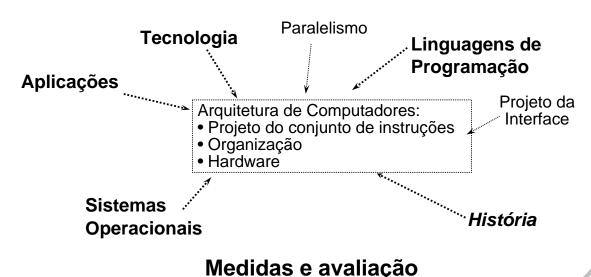
Laboratório de Engenharia de Computadores

- Sistemas tolerantes a falhas
- Projeto de sistemas digitais
- Prototipação rápida de sistemas
- Verificação formal
- Arquitetura de computadores
 - arquiteturas reconfiguráveis
- Hardware/Software Co-design
- Ferramentas de auxílio ao projeto de sistemas digitais
 - microeletrônica
- Sistemas de tempo real
- Wearable Computing



Por que estudar arquitetura de computadores?

- Quem quiser trabalhar em áreas afins...
 - arquitetura de computadores
 - sistemas operacionais
 - sistemas paralelos e distribuídos
 - projeto e análise de sistemas
- Quem quiser conhecer os sistemas que estarão no mercado no século seguinte
- Quem desenvolve sistemas
 - "afinar" o software para características específicas de uma arquitetura


"os atributos de um sistema de computação na visão do programador, i.e., a estrutura conceitual e o comportamento funcional, ... em oposição à implementação física."

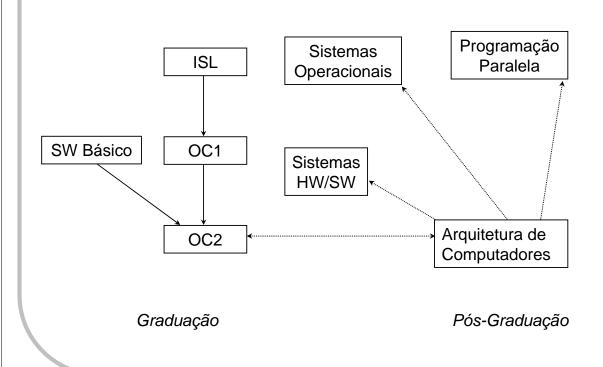
Amdahl, Blaaw, and Brooks, 1964

O que é este curso?

Entender as técnicas de projeto, arquitetura das máquinas correntes, fatores da tecnologia, métodos de avaliação que vão determinar a estrutura dos computadores do próximo século

Pré-requisitos

- Conceitos em organização de computadores
 - Organização de Computadores I
- Projeto de sistemas lógicos
 - Introdução aos Sistemas Lógicos
- Linguagens: C e assembler
- Conceitos básicos de sistemas operacionais
- Conceitos básicos de compiladores


Material do curso

- Livro texto e papers
- Listas de exercícios
- Trabalhos de implementação de uma arquitetura RISC
- Projeto de final de curso, envolvendo um tópico avançado

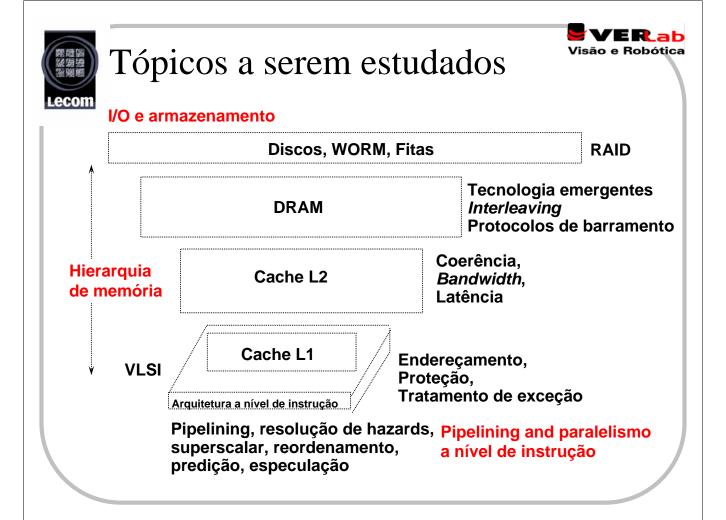
Cursos relacionados

Programação

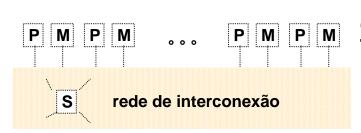
Hennessy and Patterson, *Computer Architecture: A Quantitative Approach*, 2nd Ed., Morgan Kaufman, 1995.

- Introdução à arquitetura de computadores (Capítulo 1)
- Conjunto de instruções (Capítulo 2)
- Pipelining e paralelismo de instruções (Capítulo 3, 4)
- Hierarquia do sistema de memória (Capítulo 5)
- Entrada/Saída e sistema de armazenamento (Capítulo 6)
- Tecnologia de interconexão e redes (Capítulo 7)
- Multiprocessadores (Capítulo 8)
- Aritmética de computadores (Apêndice A)
- Tópicos avançados

uRISC - Microcontrolador RISC de 16 bits


- ALU de 16 bits
- Decodificação otimizada para operações lógicas
- Estruturas de interrupção e temporização
- I/O mapeado em memória

Livros de referência complementar


- Patterson and Hennessy, Computer Organization and Design: the Hardware/Software Interface, Segunda edição, Morgan Kaufmann, 1997.
- Sailer, P.M. and Kaeli, D.R., *The DLX Instruction Set Architecture Handbook*, Morgan Kaufmann, 1996.
- R. Lipsett, C. Schaefer, C. Ussery, *VHDL: Hardware Description Language and Design*, Kluwer Academic Publishers, 1989.
- Peter J Ashenden, *The Designer's Guide to VHDL*, Morgan Kaufmann, 1995.
- manuais (SCI, SCSI, etc...) e papers

Tópicos a serem estudados

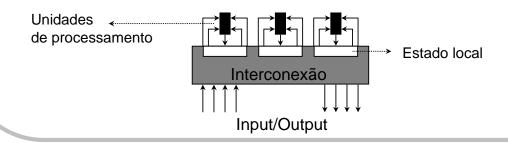
switch entre processador e memória Multiprocessadores, redes e interconexão Memória compartilhada, Troca de mensagens,

Interfaces de redes

Topologias, roteamento, bandwith, latência, reliability

Tópicos avançados

• "Portable systems"


- •Computadores vs. comunicadores inteligentes
- Alta performance vs. baixa potência
- •I/O de tempo real
- Dispositivos portáteis de armazenamento (PCMCIA)
- Baterias inteligentes
- •Técnicas de SW e HW para conservação de energia

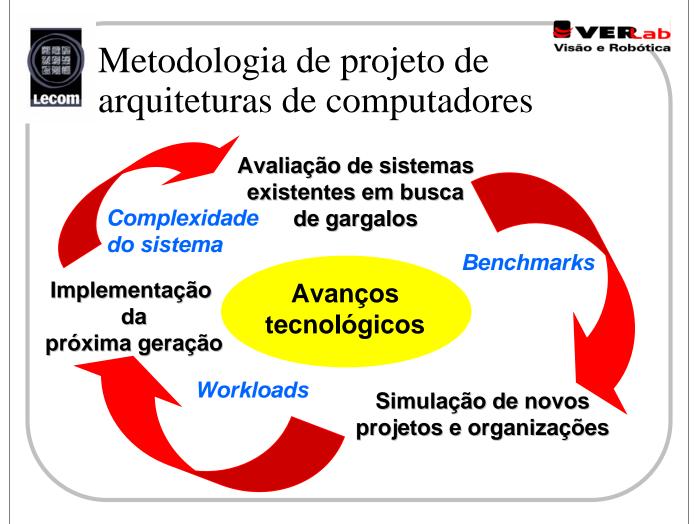
Tópicos avançados

- Processadores de uso dedicado e Arquiteturas reconfiguráveis
 - Permitem customizar processador para aplicações dedicadas para maximizar performance
 - possível com uso de dispositivos reconfiguráveis (FPGAs)
 - exemplos: decodificador de mpeg, dma's reconfiguráveis, ASIPs (Application Specific Instruction Processors)

Metodologia de projeto de arquiteturas de computadores

Avanços tecnológicos

Metodologia de projeto de arquiteturas de computadores


> Avaliação de sistemas existentes em busca

> > **Avanços** tecnológicos

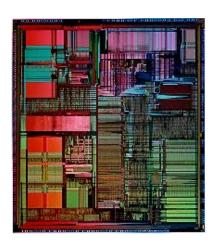
dos gargalos

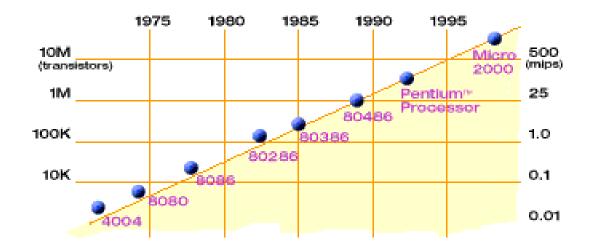
Benchmarks

Metodologia de projeto de arquiteturas de computadores (Idéia básica)

- Regra número 1: Nada vem de graça
- Regra número 2: Uma nova arquitetura ou uma nova idéia só é implementada após um estudo da sua viabilidade
- Regra número 3: Nem sempre o melhor e o mais bem desenvolvido vai ganhar o mercado
 - Microsoft Windows vs. Mac OS + OS2
 - 68000 vs. x86
 - Qualquer implementação nova tenta diminuir sua dependência com a sorte o máximo o possível (isso é um esforço multi-disciplinar)

Evolução Tecnológica


Lecom	Ano	Componente	Armazen.	Linguagens	O/S
	54	Tubes	core (8 ms)		
	58	Transistor (10)	us)		Fortran
	60			Algol, Cobol	Batch
	64	Hybrid (1µs)	thin films	Lisp, APL, Basic	
	66	IC (100ns)	(200ns)	PL1, Simula,C	
	67				Multiprog.
Gerações	71	LSI (10ns)	1k DRAM	0.0.	V.M.
Evoluções	73	(8-bit µP)			
	75	(16-bit µP)	4k DRAM		
	78	VLSI (10ns)	16k DRAM		Redes
	80		64k DRAM		
	84	(32-bit µP)	256k DRAM	ADA	
Paralelismo	87	ULSI	1M DRAM		
	89	GAs	4M DRAM	C++	
Ý	92	(64-bit μP)	16M DRAM	Fortran90	


Evolução Tecnológica Perspectiva da Intel

Ano	Processador	# Xtors	
1971	4004	2300	
1972	8008	3500	
1974	8080	6000	
1978	8086/8088	29000	
1982	80286	134K	
1985	80386	275K	
1989	80486	1.2M	
1993	Pentium	3.1M	
1995	Pentium Pro	5.5M	
1997	Pentium II	7.5M	
1999	Pentium III	9.5M	

Evolução Tecnológica *Moore Law*

Projeto de Novas Arquiteturas

- Área de aplicação
 - Special Purpose (e.g., DSP) / General Purpose
 - Científico (intenso em FP) / Comercial (Mainframe)
- Nível de compatibilidade de Software
 - Compatibilidade de código objeto/binário (custo HW vs. SW, x86)
 - Linguagem de máquina (modificações no código objeto/binário são possíveis no projeto da arquitetura)
 - Linguagens de programação (por que não?)

Projeto de Novas Arquiteturas

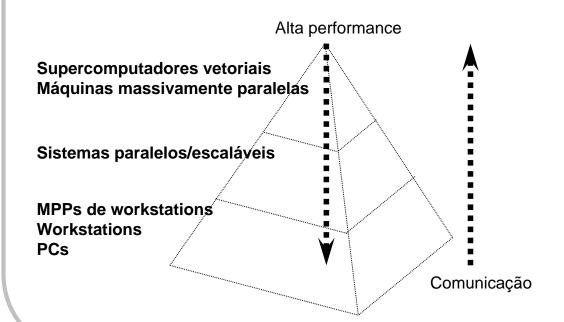
- Requisitos do sistema operacional para aplicações do tipo general purpose
 - Tamanho do espaço de endereçamento (Address Space)
 - Gerenciamento de memória e proteção
 - Trocas de contexto
 - Interrupções e Traps
- Padrões: inovação vs. competição
 - IEEE 754 (Ponto flutuante)
 - Barramentos de I/O
 - Redes
 - Sistemas operacionais / Linguagens de programação ...

Previsões para o ano 2000

- Tecnologia
 - Tamanho de RAMs dinâmicas: + 64 MBits
 - Alta velocidade para RAMs estáticas: 1 MB, 10ns
- Sistemas completos em um único chip
 - Por que isto é importante?
 - 10 + Milhões de transistores
- Paralelismo
 - Superescalar, Superpipeline, Vetorial, Multiprocessadores
 - Arrays de processadores

Previsões para o ano 2000

- Baixa potência
 - 50% dos PCs portáteis em 1995
 - Performance por watt
- I/O paralelo
 - Em muitas aplicações, I/O limita a performance
 - Poder de computação aumentando, mas I/O e memória não tem acompanhado
- Multimídia
 - Novas interfaces
 - Vídeo, voz, escrita, realidade virtual, ...


Previsões para o ano 2000

- "Computação integrada em rede"
 - Integração a nível local e global de *clusters*, MPPs, e redes de alta velocidade
- Tecnologias escaláveis para computadores, redes e sistemas de informação
 - Sistemas que escalam para cima e para baixo
 - Workstations de alta performance
 - Sistemas distribuídos
 - I/O massivamente paralelos

Incorporação de Tecnologia Tradicional

